forked from mindspore-Ecosystem/mindspore
!17798 C++ API update doc of constants
From: @luoyang42 Reviewed-by: @jonyguo,@liucunwei Signed-off-by: @jonyguo
This commit is contained in:
commit
0ae751e0ba
|
@ -26,65 +26,112 @@ namespace dataset {
|
||||||
using uchar = unsigned char;
|
using uchar = unsigned char;
|
||||||
using dsize_t = int64_t;
|
using dsize_t = int64_t;
|
||||||
|
|
||||||
/// \brief Target devices to perform map operation
|
/// \brief Target devices to perform map operation.
|
||||||
enum class MapTargetDevice { kCpu, kGpu, kAscend310 };
|
enum class MapTargetDevice {
|
||||||
|
kCpu, ///< CPU Device.
|
||||||
|
kGpu, ///< Gpu Device.
|
||||||
|
kAscend310 ///< Ascend310 Device.
|
||||||
|
};
|
||||||
|
|
||||||
/// \brief Possible dataset types for holding the data and client type
|
/// \brief The initial type of tensor implementation.
|
||||||
enum class DatasetType { kUnknown, kArrow, kTf };
|
enum class TensorImpl {
|
||||||
|
kNone, ///< None type tensor.
|
||||||
|
kFlexible, ///< Flexible type tensor, can be converted to any type.
|
||||||
|
kCv, ///< CV type tensor.
|
||||||
|
kNP ///< Numpy type tensor.
|
||||||
|
};
|
||||||
|
|
||||||
/// \brief Possible flavours of Tensor implementations
|
/// \brief The mode for shuffling data.
|
||||||
enum class TensorImpl { kNone, kFlexible, kCv, kNP };
|
enum class ShuffleMode {
|
||||||
|
kFalse = 0, ///< No shuffling is performed.
|
||||||
|
kFiles = 1, ///< Shuffle files only.
|
||||||
|
kGlobal = 2, ///< Shuffle both the files and samples.
|
||||||
|
kInfile = 3 ///< Shuffle data within each file.
|
||||||
|
};
|
||||||
|
|
||||||
/// \brief Possible values for shuffle
|
/// \brief The method of padding.
|
||||||
enum class ShuffleMode { kFalse = 0, kFiles = 1, kGlobal = 2, kInfile = 3 };
|
enum class BorderType {
|
||||||
|
kConstant = 0, ///< Fills the border with constant values.
|
||||||
|
kEdge = 1, ///< Fills the border with the last value on the edge.
|
||||||
|
kReflect = 2, ///< Reflects the values on the edge omitting the last value of edge.
|
||||||
|
kSymmetric = 3 ///< Reflects the values on the edge repeating the last value of edge.
|
||||||
|
};
|
||||||
|
|
||||||
/// \brief Possible values for Border types
|
/// \brief Possible options for Image format types in a batch.
|
||||||
enum class BorderType { kConstant = 0, kEdge = 1, kReflect = 2, kSymmetric = 3 };
|
enum class ImageBatchFormat {
|
||||||
|
kNHWC = 0, ///< Indicate the input batch is of NHWC format.
|
||||||
|
kNCHW = 1 ///< Indicate the input batch is of NCHW format.
|
||||||
|
};
|
||||||
|
|
||||||
/// \brief Possible values for Image format types in a batch
|
/// \brief Possible options for Image format types.
|
||||||
enum class ImageBatchFormat { kNHWC = 0, kNCHW = 1 };
|
enum class ImageFormat {
|
||||||
|
HWC = 0, ///< Indicate the input batch is of NHWC format
|
||||||
|
CHW = 1, ///< Indicate the input batch is of NHWC format
|
||||||
|
HW = 2 ///< Indicate the input batch is of NHWC format
|
||||||
|
};
|
||||||
|
|
||||||
/// \brief Possible values for Image format types
|
/// \brief Possible options for interpolation method.
|
||||||
enum class ImageFormat { HWC = 0, CHW = 1, HW = 2 };
|
enum class InterpolationMode {
|
||||||
|
kLinear = 0, ///< Interpolation method is linear interpolation.
|
||||||
|
kNearestNeighbour = 1, ///< Interpolation method is nearest-neighbor interpolation.
|
||||||
|
kCubic = 2, ///< Interpolation method is bicubic interpolation.
|
||||||
|
kArea = 3, ///< Interpolation method is pixel area interpolation.
|
||||||
|
kCubicPil = 4 ///< Interpolation method is bicubic interpolation like implemented in pillow.
|
||||||
|
};
|
||||||
|
|
||||||
/// \brief Possible interpolation modes
|
/// \brief Possible tokenize modes for JiebaTokenizer.
|
||||||
enum class InterpolationMode { kLinear = 0, kNearestNeighbour = 1, kCubic = 2, kArea = 3, kCubicPil = 4 };
|
enum class JiebaMode {
|
||||||
|
kMix = 0, ///< Tokenize with MPSegment algorithm.
|
||||||
|
kMp = 1, ///< Tokenize with Hiddel Markov Model Segment algorithm.
|
||||||
|
kHmm = 2 ///< Tokenize with a mix of MPSegment and HMMSegment algorithm.
|
||||||
|
};
|
||||||
|
|
||||||
/// \brief Possible JiebaMode modes
|
/// \brief Possible options for SPieceTokenizerOutType.
|
||||||
enum class JiebaMode { kMix = 0, kMp = 1, kHmm = 2 };
|
enum class SPieceTokenizerOutType {
|
||||||
|
kString = 0, ///< Output of sentencepiece tokenizer is string type.
|
||||||
|
kInt = 1 ///< Output of sentencepiece tokenizer is int type.
|
||||||
|
};
|
||||||
|
|
||||||
/// \brief Possible values for SPieceTokenizerOutType
|
/// \brief Possible options for SPieceTokenizerLoadType.
|
||||||
enum class SPieceTokenizerOutType { kString = 0, kInt = 1 };
|
enum class SPieceTokenizerLoadType {
|
||||||
|
kFile = 0, ///< Load sentencepiece tokenizer from local sentencepiece vocab file.
|
||||||
|
kModel = 1 ///< Load sentencepiece tokenizer from sentencepiece vocab instance.
|
||||||
|
};
|
||||||
|
|
||||||
/// \brief Possible values for SPieceTokenizerLoadType
|
/// \brief Type options for SentencePiece Model.
|
||||||
enum class SPieceTokenizerLoadType { kFile = 0, kModel = 1 };
|
enum class SentencePieceModel {
|
||||||
|
kUnigram = 0, ///< Based on Unigram model.
|
||||||
|
kBpe = 1, ///< Based on Byte Pair Encoding (BPE) model.
|
||||||
|
kChar = 2, ///< Based on Char model.
|
||||||
|
kWord = 3 ///< Based on Word model.
|
||||||
|
};
|
||||||
|
|
||||||
/// \brief Possible values for SentencePieceModel
|
/// \brief Possible options to specify a specific normalize mode.
|
||||||
enum class SentencePieceModel { kUnigram = 0, kBpe = 1, kChar = 2, kWord = 3 };
|
|
||||||
|
|
||||||
/// \brief Possible values for NormalizeForm
|
|
||||||
enum class NormalizeForm {
|
enum class NormalizeForm {
|
||||||
kNone = 0,
|
kNone = 0, ///< Do nothing for input string tensor.
|
||||||
kNfc,
|
kNfc, ///< Normalize with Normalization Form C.
|
||||||
kNfkc,
|
kNfkc, ///< Normalize with Normalization Form KC.
|
||||||
kNfd,
|
kNfd, ///< Normalize with Normalization Form D.
|
||||||
kNfkd,
|
kNfkd, ///< Normalize with Normalization Form KD.
|
||||||
};
|
};
|
||||||
|
|
||||||
/// \brief Possible values for Mask
|
/// \brief Possible options for Mask.
|
||||||
enum class RelationalOp {
|
enum class RelationalOp {
|
||||||
kEqual = 0, // ==
|
kEqual = 0, ///< equal to `==`
|
||||||
kNotEqual, // !=
|
kNotEqual, ///< equal to `!=`
|
||||||
kLess, // <
|
kLess, ///< equal to `<`
|
||||||
kLessEqual, // <=
|
kLessEqual, ///< equal to `<=`
|
||||||
kGreater, // >
|
kGreater, ///< equal to `>`
|
||||||
kGreaterEqual, // >=
|
kGreaterEqual, ///< equal to `>=`
|
||||||
};
|
};
|
||||||
|
|
||||||
/// \brief Possible values for SamplingStrategy
|
/// \brief Possible options for SamplingStrategy.
|
||||||
enum class SamplingStrategy { kRandom = 0, kEdgeWeight = 1 };
|
enum class SamplingStrategy {
|
||||||
|
kRandom = 0, ///< Random sampling with replacement.
|
||||||
|
kEdgeWeight = 1 ///< Sampling with edge weight as probability.
|
||||||
|
};
|
||||||
|
|
||||||
// convenience functions for 32bit int bitmask
|
// convenience functions for 32bit int bitmask.
|
||||||
inline bool BitTest(uint32_t bits, uint32_t bitMask) { return (bits & bitMask) == bitMask; }
|
inline bool BitTest(uint32_t bits, uint32_t bitMask) { return (bits & bitMask) == bitMask; }
|
||||||
|
|
||||||
inline void BitSet(uint32_t *bits, uint32_t bitMask) { *bits |= bitMask; }
|
inline void BitSet(uint32_t *bits, uint32_t bitMask) { *bits |= bitMask; }
|
||||||
|
|
|
@ -1389,7 +1389,7 @@ inline std::shared_ptr<MindDataDataset> MindData(
|
||||||
/// ShuffleMode::kFalse - No shuffling is performed.
|
/// ShuffleMode::kFalse - No shuffling is performed.
|
||||||
/// ShuffleMode::kFiles - Shuffle files only.
|
/// ShuffleMode::kFiles - Shuffle files only.
|
||||||
/// ShuffleMode::kGlobal - Shuffle both the files and samples.
|
/// ShuffleMode::kGlobal - Shuffle both the files and samples.
|
||||||
/// ShuffleMode::kInfile - Shuffle samples in file.
|
/// ShuffleMode::kInfile - Shuffle data within each file.
|
||||||
/// \param[in] cache Tensor cache to use (default=nullptr which means no cache is used).
|
/// \param[in] cache Tensor cache to use (default=nullptr which means no cache is used).
|
||||||
/// \return Shared pointer to the MindDataDataset.
|
/// \return Shared pointer to the MindDataDataset.
|
||||||
inline std::shared_ptr<MindDataDataset> MindData(const std::vector<std::string> &dataset_files,
|
inline std::shared_ptr<MindDataDataset> MindData(const std::vector<std::string> &dataset_files,
|
||||||
|
|
Loading…
Reference in New Issue