forked from mindspore-Ecosystem/mindspore
Add some description of InTopK op in API.
This commit is contained in:
parent
faa0a6ad45
commit
0a28c79fe0
|
@ -41,7 +41,7 @@ class ReduceLogSumExp(Cell):
|
|||
Default : False.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor[Number]) - The input tensor.
|
||||
- **input_x** (Tensor[Number]) - The input tensor. With float16 or float32 data type.
|
||||
- **axis** (Union[int, tuple(int), list(int)]) - The dimensions to reduce. Default: (), reduce all dimensions.
|
||||
Only constant value is allowed.
|
||||
|
||||
|
|
|
@ -4365,11 +4365,11 @@ class SparseApplyProximalAdagrad(PrimitiveWithCheck):
|
|||
Inputs:
|
||||
- **var** (Parameter) - Variable tensor to be updated. The data type must be float16 or float32.
|
||||
- **accum** (Parameter) - Variable tensor to be updated, has the same dtype as `var`.
|
||||
- **lr** (Union[Number, Tensor]) - The learning rate value. should be a float number or
|
||||
- **lr** (Union[Number, Tensor]) - The learning rate value, should be a float number or
|
||||
a scalar tensor with float16 or float32 data type.
|
||||
- **l1** (Union[Number, Tensor]) - l1 regularization strength. should be a float number or
|
||||
- **l1** (Union[Number, Tensor]) - l1 regularization strength, should be a float number or
|
||||
a scalar tensor with float16 or float32 data type.
|
||||
- **l2** (Union[Number, Tensor]) - l2 regularization strength. should be a float number or
|
||||
- **l2** (Union[Number, Tensor]) - l2 regularization strength, should be a float number or
|
||||
a scalar tensor with float16 or float32 data type..
|
||||
- **grad** (Tensor) - A tensor of the same type as `var`, for the gradient.
|
||||
- **indices** (Tensor) - A vector of indices in the first dimension of `var` and `accum`.
|
||||
|
@ -5444,7 +5444,8 @@ class InTopK(PrimitiveWithInfer):
|
|||
Inputs:
|
||||
- **x1** (Tensor) - A 2D Tensor defines the predictions of a batch of samples with float16 or float32 data type.
|
||||
- **x2** (Tensor) - A 1D Tensor defines the labels of a batch of samples with int32 data type. The size of x2
|
||||
must be equal to x1's first dimension.
|
||||
must be equal to x1's first dimension. The values of `x2` can not be negative and
|
||||
must be equal to or less than index of x1's second dimension.
|
||||
|
||||
Outputs:
|
||||
Tensor has 1 dimension of type bool and the same shape with `x2`. For labeling sample `i` in `x2`,
|
||||
|
|
Loading…
Reference in New Issue