add print comment and fix some example

This commit is contained in:
guohongzilong 2020-04-18 16:50:09 +08:00
parent d1b452cf3a
commit 08775a67e7
3 changed files with 8 additions and 5 deletions

View File

@ -65,7 +65,7 @@ class AllReduce(PrimitiveWithInfer):
The contents depend on the specified operation.
Examples:
>>> from mindspore.communication.management import init
>>> from mindspore.communication import init
>>> import mindspore.ops.operations as P
>>> init('nccl')
>>> class Net(nn.Cell):
@ -130,7 +130,7 @@ class AllGather(PrimitiveWithInfer):
then the shape of output is :math:`(N, x_1, x_2, ..., x_R)`.
Examples:
>>> from mindspore.communication.management import init
>>> from mindspore.communication import init
>>> import mindspore.ops.operations as P
>>> init('nccl')
>>> class Net(nn.Cell):
@ -187,7 +187,7 @@ class ReduceScatter(PrimitiveWithInfer):
ValueError: If the first dimension of input can not be divided by rank size.
Examples:
>>> from mindspore.communication.management import init
>>> from mindspore.communication import init
>>> import mindspore.ops.operations as P
>>> init('nccl')
>>> class Net(nn.Cell):
@ -252,7 +252,7 @@ class Broadcast(PrimitiveWithInfer):
TypeError: If root_rank is not a integer or group is not a string.
Examples:
>>> from mindspore.communication.management import init
>>> from mindspore.communication import init
>>> import mindspore.ops.operations as P
>>> init('nccl')
>>> class Net(nn.Cell):

View File

@ -161,6 +161,9 @@ class Print(PrimitiveWithInfer):
"""
Output tensor or string to stdout.
Note:
The print operation cannot support float64 and bool types currently.
Inputs:
- **input_x** (Union[Tensor, str]) - The graph node to attach to. The input supports
multiple strings and tensors which are separated by ','.

View File

@ -120,7 +120,7 @@ class BoundingBoxDecode(PrimitiveWithInfer):
Examples:
>>> boundingbox_decode = P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0),
max_shape=(768, 1280), wh_ratio_clip=0.016)
>>> max_shape=(768, 1280), wh_ratio_clip=0.016)
>>> bbox = boundingbox_decode(anchor_box, deltas)
"""