forked from mindspore-Ecosystem/mindspore
!17626 matmul to mul
Merge pull request !17626 from lingyunli63/matmul_to_mul
This commit is contained in:
commit
07f58b0b46
|
@ -53,3 +53,4 @@ from .softmax_grad_ext import SoftmaxGradExt
|
|||
from .square_sum_v1 import SquareSumV1
|
||||
from .fused_mul_add import FusedMulAdd
|
||||
from .conv2d import Conv2D
|
||||
from .matmul import MatMul, BatchMatMul
|
||||
|
|
|
@ -0,0 +1,74 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ===========================================================================
|
||||
"""generate json desc for BatchMatMul and MatMul"""
|
||||
from mindspore._extends.graph_kernel.model.model import DataFormat as DF
|
||||
from mindspore._extends.graph_kernel.model.model import GraphKernelUnsupportedException as GKException
|
||||
from ._utils import Expander, ExpanderInfoValidator as VLD
|
||||
|
||||
@VLD.check_attrs('transpose_a', 'transpose_b', 'left_format', 'right_format')
|
||||
class MatMul(Expander):
|
||||
"""
|
||||
MatMul expander
|
||||
"""
|
||||
|
||||
def __init__(self, expand_info):
|
||||
super().__init__(expand_info)
|
||||
self.transpose_a = self.attrs['transpose_a']
|
||||
self.transpose_b = self.attrs['transpose_b']
|
||||
self.left_format = self.attrs['left_format']
|
||||
self.right_format = self.attrs['right_format']
|
||||
self.shape_a = self.inputs[0]['shape']
|
||||
self.shape_b = self.inputs[1]['shape']
|
||||
|
||||
def _optimize_to_mul(self):
|
||||
"""check if matmul can be replace by mul"""
|
||||
if self.left_format != DF.DEFAULT or self.right_format != DF.DEFAULT:
|
||||
return False
|
||||
k_a = self.shape_a[-2] if self.transpose_a else self.shape_a[-1]
|
||||
k_b = self.shape_b[-1] if self.transpose_b else self.shape_b[-2]
|
||||
if k_a != 1 or k_b != 1:
|
||||
return False
|
||||
return True
|
||||
|
||||
def _check(self):
|
||||
input_num = len(self.inputs)
|
||||
if input_num < 2:
|
||||
raise GKException("matul inputs number should bigger than 1, but got {}.".format(input_num))
|
||||
|
||||
def _trans_shape(self, shape):
|
||||
trans_shape = list(shape)
|
||||
trans_shape[-2] = shape[-1]
|
||||
trans_shape[-1] = shape[-2]
|
||||
return trans_shape
|
||||
|
||||
def _expand(self, graph_builder):
|
||||
if not self._optimize_to_mul():
|
||||
raise GKException("MatMul/BatchMatMul do not need to be replaced by Mul")
|
||||
#Matmul is replaced by Mul([b m k], [b k n]) when k==1
|
||||
input_a = self.inputs[0]
|
||||
input_b = self.inputs[1]
|
||||
if self.transpose_a:
|
||||
shape_a_trans = self._trans_shape(self.shape_a)
|
||||
input_a = graph_builder.emit('Reshape', [input_a], attrs={'shape': shape_a_trans})
|
||||
if self.transpose_b:
|
||||
shape_b_trans = self._trans_shape(self.shape_b)
|
||||
input_b = graph_builder.emit('Reshape', [input_b], attrs={'shape': shape_b_trans})
|
||||
result = graph_builder.emit('Mul', [input_a, input_b])
|
||||
if 'dst_type' in self.attrs and self.inputs[0].dtype != self.attrs['dst_type']:
|
||||
result = graph_builder.emit('Cast', [result], attrs={'dst_type': self.attrs['dst_type']})
|
||||
return result
|
||||
|
||||
class BatchMatMul(MatMul):
|
||||
"""BatchMatMul expander"""
|
|
@ -16,7 +16,6 @@
|
|||
|
||||
import copy
|
||||
import sys
|
||||
from functools import reduce
|
||||
from .model import GraphKernelUnsupportedException as GKException
|
||||
from .model import PrimLib, DataFormat as DF
|
||||
|
||||
|
@ -102,19 +101,60 @@ class OpInfer:
|
|||
class _Elemwise(OpInfer):
|
||||
"""Common infer for elementwise operators"""
|
||||
|
||||
def _infer_shape(self):
|
||||
"""returns the input shape with largest flatten size"""
|
||||
shape = (1,)
|
||||
max_flatten_size = 1
|
||||
for t in self.inputs:
|
||||
if t.data_format != DF.DEFAULT:
|
||||
return t.shape
|
||||
flatten_size = reduce(lambda x, y: x * y, t.shape)
|
||||
if flatten_size > max_flatten_size or (flatten_size == max_flatten_size and len(t.shape) > len(shape)):
|
||||
max_flatten_size = flatten_size
|
||||
shape = t.shape
|
||||
def _broadcast_shape(self, shapes):
|
||||
"""deduce broadcast shape using same rules as numpy"""
|
||||
dim_size = max([len(shape) for shape in shapes])
|
||||
align_shapes = [[1] * (dim_size - len(shape)) + shape for shape in shapes]
|
||||
out_shape = [1] * dim_size
|
||||
for i in range(dim_size):
|
||||
for align_shape in align_shapes:
|
||||
if align_shape[i] > 1:
|
||||
if out_shape[i] == 1:
|
||||
out_shape[i] = align_shape[i]
|
||||
if out_shape[i] != align_shape[i]:
|
||||
raise GKException("shape broadcast failed!")
|
||||
return out_shape
|
||||
|
||||
def _to_nz(self, default_shape):
|
||||
"""default format shape to fractal_Nz format shape"""
|
||||
if len(default_shape) not in (1, 2):
|
||||
raise GKException("shape is too long!")
|
||||
# (32) or (1, 32) -> (2, 1, 1, 16)
|
||||
if len(default_shape) == 1 or (len(default_shape) == 2 and default_shape[0] == 1):
|
||||
shape = [default_shape[-1] // 16, 1, 1, 16]
|
||||
if default_shape[-1] % 16 != 0:
|
||||
raise GKException("should be multiplies of 16")
|
||||
return shape
|
||||
#(32, 1) -> (1, 2, 16, 1)
|
||||
if len(default_shape) == 2 and default_shape[1] == 1:
|
||||
shape = [1, default_shape[0] // 16, 16, 1]
|
||||
if default_shape[0] % 16 != 0:
|
||||
raise GKException("should be multiples of 16")
|
||||
return shape
|
||||
#(32, 48) -> (3, 2, 16, 16)
|
||||
shape = [default_shape[1] // 16, default_shape[0] // 16, 16, 16]
|
||||
if default_shape[0] % 16 != 0 or defautl_shape[1] % 16 != 0:
|
||||
raise GKException("should be multiples of 16")
|
||||
return shape
|
||||
|
||||
def _infer_shape(self):
|
||||
"""returns the output shape with broadcast"""
|
||||
|
||||
# in case all inputs are default format/NHWC/NCHW
|
||||
is_default = [input.data_format in (DF.DEFAULT, DF.NHWC, DF.NCHW) for input in self.inputs]
|
||||
if all(is_default):
|
||||
return self._broadcast_shape([input.shape for input in self.inputs])
|
||||
|
||||
# in case formats are fractal_nz, default_fromat/NHWC/HCHW(optional)
|
||||
is_default_frac_nz = [input.data_format in (DF.DEFAULT, DF.NHWC, DF.NCHW, DF.FRAC_NZ) \
|
||||
for input in self.inputs]
|
||||
if all(is_default_frac_nz):
|
||||
nz_shapes = [self._to_nz(input.shape) if input.data_format != DF.FRAC_NZ else input.shape \
|
||||
for input in self.inputs]
|
||||
return self._broadcast_shape(nz_shapes)
|
||||
|
||||
raise GKException("Only support default and fractal_nz")
|
||||
|
||||
def _infer_format(self):
|
||||
for tensor in self.inputs:
|
||||
if tensor.data_format != DF.DEFAULT:
|
||||
|
|
|
@ -56,6 +56,8 @@ std::vector<PrimitivePtr> GetExpandOps() {
|
|||
prim::kPrimLogSoftmax,
|
||||
prim::kPrimLogSoftmaxGrad,
|
||||
prim::kPrimTile,
|
||||
prim::kPrimMatMul,
|
||||
prim::kPrimBatchMatMul,
|
||||
#if ENABLE_D
|
||||
prim::kPrimSqrtGrad,
|
||||
prim::kPrimClipByNormNoDivSum,
|
||||
|
|
|
@ -0,0 +1,91 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn import Cell
|
||||
import mindspore.ops.operations as P
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.matmul = P.MatMul(transpose_a=False, transpose_b=False)
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.matmul(x, y)
|
||||
|
||||
class Net1(Cell):
|
||||
def __init__(self):
|
||||
super(Net1, self).__init__()
|
||||
self.bmm = P.BatchMatMul(transpose_a=False, transpose_b=False)
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.bmm(x, y)
|
||||
|
||||
def get_output(i0, i1, net_cls, enable_graph_kernel=False):
|
||||
context.set_context(enable_graph_kernel=enable_graph_kernel)
|
||||
net = net_cls()
|
||||
output = net(i0, i1)
|
||||
return output
|
||||
|
||||
def test_matmul():
|
||||
i0 = Tensor(np.random.normal(1, 0.01, [96, 1]).astype(np.float32))
|
||||
i1 = Tensor(np.random.normal(1, 0.01, [1, 128]).astype(np.float32))
|
||||
expect = get_output(i0, i1, Net, False)
|
||||
output = get_output(i0, i1, Net, True)
|
||||
expect_np = expect.asnumpy().copy()
|
||||
output_np = output.asnumpy().copy()
|
||||
assert np.allclose(expect_np, output_np, 1.e-4, 1.e-7)
|
||||
|
||||
def test_batchmatmul():
|
||||
i0 = Tensor(np.random.normal(1, 0.01, [16, 96, 1]).astype(np.float32))
|
||||
i1 = Tensor(np.random.normal(1, 0.01, [16, 1, 128]).astype(np.float32))
|
||||
expect = get_output(i0, i1, Net1, False)
|
||||
output = get_output(i0, i1, Net1, True)
|
||||
expect_np = expect.asnumpy().copy()
|
||||
output_np = output.asnumpy().copy()
|
||||
assert np.allclose(expect_np, output_np, 6.e-4, 6.e-4)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_matmul_ascend():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
test_matmul()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_batchmatmul_ascend():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
test_batchmatmul()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_matmul_gpu():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
test_matmul()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_batchmatmul_gpu():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
test_batchmatmul()
|
Loading…
Reference in New Issue