!30565 [MSLite][Micro]add micro examples and delete useless tests.

Merge pull request !30565 from lz/microv4
This commit is contained in:
i-robot 2022-02-25 06:18:09 +00:00 committed by Gitee
commit 0641261e3d
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
6 changed files with 397 additions and 57 deletions

View File

@ -66,3 +66,4 @@
"mindspore/mindspore/lite/examples/runtime_gpu_extend/src/cl" "readability/fn_size"
"mindspore/mindspore/lite/examples/quick_start_c/main.c" "readability/casting"
"mindspore/mindspore/lite/examples/quick_start_c/main.c" "runtime/threadsafe_fn"
"mindspore/mindspore/lite/examples/quick_start_micro" "readability/casting"

View File

@ -0,0 +1,268 @@
# X86编译部署
`Linux` `IoT` `C++` `全流程` `模型编译` `模型代码生成` `模型部署` `推理应用` `初级` `中级` `高级`
<!-- TOC -->
- [X86编译部署](#X86编译部署)
- [概述](#概述)
- [模型编译体验](#模型编译体验)
- [详细步骤](#详细步骤)
- [生成代码](#生成代码)
- [部署应用](#部署应用)
- [编译依赖](#编译依赖)
- [构建与运行](#构建与运行)
- [编写推理代码示例](#编写推理代码示例)
- [更多详情](#更多详情)
- [Android平台编译部署](#android平台编译部署)
- [Arm&nbsp;Cortex-M平台编译部署](#armcortex-m平台编译部署)
<!-- /TOC -->
## 概述
本教程以MNIST分类模型推理代码为例帮助用户了解codegen生成代码、编译构建、部署等流程。
## 模型编译体验
用户可以使用脚本一键式编译生成MNIST分类模型的推理代码并执行推理得到单次推理输出。下载[MindSpore源码](https://gitee.com/mindspore/mindspore),进入[`mindspore/mindspore/lite/micro/examples/mnist_x86`](https://gitee.com/mindspore/mindspore/tree/master/mindspore/lite/micro/example/mnist_x86)目录,执行脚本`mnist.sh`自动生成模型推理代码并编译工程目录,即可得到单次推理输出。
```bash
bash mnist.sh
```
推理结果如下:
```text
======run benchmark======
input 0: mnist_input.bin
outputs:
name: Softmax-7, DataType: 43, Size: 40, Shape: [1 10], Data:
0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
======run success=======
```
也可以按照**详细步骤**从生成代码开始逐步完成使用codegen编译一个MNIST分类模型的全流程。
## 详细步骤
在编译此工程之前需要预先获取Ubuntu-x64 CPU平台的[Release包](https://www.mindspore.cn/lite/docs/zh-CN/master/use/downloads.html),解压后得到`mindspore-lite-{version}-linux-x64`,将其拷贝到当前目录下。
> `{version}`为版本号字符串,如`1.2.0`。
以本教程为例预置x86平台的Release包目录如下
```text
mindspore-lite-{version}-linux-x64
└── tools
└── codegen # 代码生成工具
├── codegen # 可执行程序
├── include # 推理框架头文件
│ ├── nnacl # nnacl 算子头文件
│ └── wrapper
├── lib
│ └── libwrapper.a # MindSpore Lite CodeGen生成代码依赖的部分算子静态库
└── third_party
├── include
│ └── CMSIS # ARM CMSIS NN 算子头文件
└── lib
└── libcmsis_nn.a # ARM CMSIS NN 算子静态库
```
### 生成代码
下载[MNIST分类网络](https://download.mindspore.cn/model_zoo/official/lite/mnist_lite/mnist.ms)。使用Release包中的codegen编译MNIST分类模型生成对应的x86平台推理代码。生成代码的具体命令如下
```bash
./codegen --codePath=. --modelPath=mnist.ms --target=x86
```
codegen在当前目录下将生成mnist目录其中包含了可编译构建的mnist分类模型的代码。
> 关于codegen的更多使用命令说明可参见[codegen使用说明](https://www.mindspore.cn/lite/docs/zh-CN/master/use/micro.html#id4)。
### 部署应用
接下来介绍如何构建MindSpore Lite CodeGen生成的模型推理代码工程并在x86平台完成部署。上文中codegen生成的代码与`mindspore/mindspore/lite/micro/example/mnist_x86`相同本章节编译、构建步骤将对该目录展开用户也可参照相同操作编译上文codegen生成mnist目录代码。
#### 编译依赖
- [CMake](https://cmake.org/download/) >= 3.18.3
- [GCC](https://gcc.gnu.org/releases.html) >= 7.3.0
#### 构建与运行
1. **生成代码工程说明**
进入`mindspore/mindspore/lite/micro/example/mnist_x86`目录中。
生成代码工程目录说明:
当前目录下预置了MNIST分类网络生成的代码。
```text
mnist_x86/ # 生成代码的根目录
├── benchmark # 生成代码的benchmark目录
└── src # 模型推理代码目录
```
2. **代码编译**
组织模型生成的推理代码以及算子静态库编译生成模型推理静态库并编译生成benchmark可执行文件,
进入代码工程目录下新建并进入build目录
```bash
mkdir build && cd build
```
开始编译:
```bash
cmake -DPKG_PATH={path to}/mindspore-lite-{version}-linux-x64 ..
make
```
> `{path to}`和`{version}`需要用户根据实际情况填写。
代码工程编译成功结果:
```text
Scanning dependencies of target net
[ 12%] Building C object src/CMakeFiles/net.dir/net.c.o
[ 25%] Building CXX object src/CMakeFiles/net.dir/session.cc.o
[ 37%] Building CXX object src/CMakeFiles/net.dir/tensor.cc.o
[ 50%] Building C object src/CMakeFiles/net.dir/weight.c.o
[ 62%] Linking CXX static library libnet.a
unzip raw static library libnet.a
raw static library libnet.a size:
-rw-r--r-- 1 user user 58K Mar 22 10:09 libnet.a
generate specified static library libnet.a
new static library libnet.a size:
-rw-r--r-- 1 user user 162K Mar 22 10:09 libnet.a
[ 62%] Built target net
Scanning dependencies of target benchmark
[ 75%] Building CXX object CMakeFiles/benchmark.dir/benchmark/benchmark.cc.o
[ 87%] Building C object CMakeFiles/benchmark.dir/benchmark/load_input.c.o
[100%] Linking CXX executable benchmark
[100%] Built target benchmark
```
此时在`mnist_x86/build/src/`目录下生成了`libnet.a`,推理执行库,在`mnist_x86/build`目录下生成了`benchmark`可执行文件。
3. **代码部署**
本示例部署于x86平台。由代码工程编译成功以后的产物为`benchmark`可执行文件将其拷贝到用户的目标Linux服务器中即可执行。
在目标Linux服务上执行编译成功的二进制文件
```bash
./benchmark mnist_input.bin net.bin
```
> mnist_input.bin在`example/mnist_x86`目录下,`net.bin`为模型参数文件,在`example/mnist_x86/src`目录下。
生成结果如下:
```text
start run benchmark
input 0: mnist_input.bin
output size: 1
uint8:
Name: Softmax-7, DataType: 43, Size: 40, Shape: 1 10, Data:
0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
run benchmark success
```
#### 编写推理代码示例
本教程中的`benchmark`内部实现主要用于指导用户如何编写以及调用codegen编译的模型推理代码接口。以下为接口调用的详细介绍详情代码可以参见[examples/mnist_x86](https://gitee.com/mindspore/mindspore/tree/master/mindspore/lite/micro/example/mnist_x86)下的示例代码示例:
1. **构建推理的上下文以及会话**
本教程生成的代码为非并行代码无需上下文context可直接设为空。
```cpp
size_t model_size = 0;
Context *context = nullptr;
session::LiteSession *session = mindspore::session::LiteSession::CreateSession(model_buffer, model_size, context);
if (session == nullptr) {
std::cerr << "create lite session failed" << std::endl;
return RET_ERROR;
}
```
2. **输入数据准备**
用户所需要准备的输入数据内存空间,若输入是持久化文件,可通过读文件方式获取。若输入数据已经存在内存中,则此处无需读取,可直接传入数据指针。
```cpp
std::vector<MSTensor *> inputs = session->GetInputs();
MSTensor *input = inputs.at(0);
if (input == nullptr) {
return RET_ERROR;
}
// Assume we have got input data in memory.
memcpy(input->MutableData(), input_buffer, input->Size());
```
3. **执行推理**
```cpp
session->RunGraph();
```
4. **推理结束获取输出**
```cpp
Vector<String> outputs_name = session->GetOutputTensorNames();
for (const auto &name : outputs_name) {
auto output = session->GetOutputByTensorName(name);
// deal with output
......
}
```
5. **释放内存session**
```cpp
delete session;
```
6. **推理代码整体调用流程**
```cpp
// Assume we have got model_buffer data in memory.
size_t model_size = 0;
Context *context = nullptr;
session::LiteSession *session = mindspore::session::LiteSession::CreateSession(model_buffer, model_size, context);
if (session == nullptr) {
std::cerr << "create lite session failed" << std::endl;
return RET_ERROR;
}
std::vector<MSTensor *> inputs = session->GetInputs();
MSTensor *input = inputs.at(0);
if (input == nullptr) {
return RET_ERROR;
}
// Assume we have got input data in memory.
memcpy(input->MutableData(), input_buffer, input->Size());
session->RunGraph();
Vector<String> outputs_name = session->GetOutputTensorNames();
for (const auto &name : outputs_name) {
auto output = session->GetOutputByTensorName(name);
// deal with output
......
}
delete session;
```
## 更多详情
### [Android平台编译部署](https://gitee.com/mindspore/mindspore/blob/master/mindspore/lite/micro/example/mobilenetv2/README.md#)
### [Arm&nbsp;Cortex-M平台编译部署](https://www.mindspore.cn/lite/docs/zh-CN/master/use/micro.html)

View File

@ -0,0 +1,27 @@
[common_quant_param]
# Supports WEIGHT_QUANT or FULL_QUANT
#quant_type=WEIGHT_QUANT
# Weight quantization support the number of bits [0,16], Set to 0 is mixed bit quantization, otherwise it is fixed bit quantization
# Full quantization support the number of bits [1,8]
#bit_num=8
# Layers with size of weights exceeds threshold `min_quant_weight_size` will be quantized.
#min_quant_weight_size=0
# Layers with channel size of weights exceeds threshold `min_quant_weight_channel` will be quantized.
#min_quant_weight_channel=16
[micro_param]
# enable code-generation for MCU HW
enable_micro=true
# specify HW target, support x86,ARM32M, AMR32A, ARM64 only.
target=x86
# code generation for Inference or Train
codegen_mode=Inference
# enable parallel inference or not
support_parallel=false
# enable debug
debug_mode=false

View File

@ -0,0 +1,101 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
set -e
GEN=OFF
TARBALL=""
while getopts 'r:g:' OPT
do
case "${OPT}" in
g)
GEN=$OPTARG
;;
r)
TARBALL=$OPTARG
;;
?)
echo "Usage: add -g on , -r specific release.tar.gz"
esac
done
BASEPATH="$( cd "$( dirname "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )"
ROOT_DIR=${BASEPATH%%/mindspore/lite/examples/quick_start_micro/mnist_x86}
DEMO_DIR=${ROOT_DIR}/mindspore/lite/examples/quick_start_micro/mnist_x86
MODEL_DIR=${ROOT_DIR}/mindspore/lite/examples/quick_start_micro/models
PKG_DIR=${ROOT_DIR}/mindspore/lite/examples/quick_start_micro/pkgs
COFIG_FILE=${DEMO_DIR}/micro.cfg
echo "root dir is: ${ROOT_DIR}"
echo "current dir is: ${BASEPATH}"
echo "demo dir is: ${DEMO_DIR}"
echo "model dir is: ${MODEL_DIR}"
MODEL_NAME=mnist
INPUT_BIN=${MODEL_DIR}/${MODEL_NAME}/mnist.tflite.ms.bin
VALICATION_DATA=${MODEL_DIR}/${MODEL_NAME}/mnist.tflite.ms.out
MODEL=${MODEL_DIR}/${MODEL_NAME}/mnist.tflite
MODEL_FILE=${MODEL_NAME}.tar.gz
get_version() {
local VERSION_HEADER=${ROOT_DIR}/mindspore/lite/include/version.h
local VERSION_MAJOR=$(grep "const int ms_version_major =" ${VERSION_HEADER} | tr -dc "[0-9]")
local VERSION_MINOR=$(grep "const int ms_version_minor =" ${VERSION_HEADER} | tr -dc "[0-9]")
local VERSION_REVISION=$(grep "const int ms_version_revision =" ${VERSION_HEADER} | tr -dc "[0-9]")
VERSION_STR=${VERSION_MAJOR}.${VERSION_MINOR}.${VERSION_REVISION}
}
download_mnist() {
rm -rf ${MODEL_DIR:?}/${MODEL_NAME}
mkdir -p ${MODEL_DIR}/${MODEL_NAME}
tar xzvf ${MODEL_DIR}/${MODEL_FILE} -C ${MODEL_DIR}/${MODEL_NAME} || exit 1
}
gen_mnist() {
tar xzvf ${PKG_DIR}/${MINDSPORE_FILE} -C ${PKG_DIR} || exit 1
export LD_LIBRARY_PATH=${PKG_DIR}/${MINDSPORE_FILE_NAME}/tools/converter/lib:${LD_LIBRARY_PATH}
${PKG_DIR}/${MINDSPORE_FILE_NAME}/tools/converter/converter/converter_lite --fmk=TFLITE --modelFile=${MODEL} --outputFile=${DEMO_DIR} --configFile=${COFIG_FILE}
}
mkdir -p ${BASEPATH}/build
get_version
MINDSPORE_FILE_NAME="mindspore-lite-${VERSION_STR}-linux-x64"
MINDSPORE_FILE="${MINDSPORE_FILE_NAME}.tar.gz"
PKG_PATH=${PKG_DIR}/${MINDSPORE_FILE_NAME}
echo "tar ball is: ${TARBALL}"
if [ -n "$TARBALL" ]; then
echo "cp file"
rm -rf ${PKG_DIR}
mkdir -p ${PKG_DIR}
cp ${TARBALL} ${PKG_DIR}
fi
# 1. code-generation
if [[ "${GEN}" == "ON" ]] || [[ "${GEN}" == "on" ]]; then
echo "downloading mnist.ms!"
download_mnist
echo "generating mnist"
gen_mnist
fi
# 2. build benchmark
mkdir -p ${DEMO_DIR}/build && cd ${DEMO_DIR}/build || exit 1
cmake -DPKG_PATH=${PKG_PATH} ..
make
# 3. run benchmark
echo "net file: ${DEMO_DIR}/src/mnist.bin"
./benchmark ${INPUT_BIN} ../src/net.bin 1 ${VALICATION_DATA}

View File

@ -1,24 +0,0 @@
add_definitions(-DUSE_GLOG)
string(REPLACE "/test" "" MICRO_DIR ${CMAKE_CURRENT_SOURCE_DIR})
string(REPLACE " -fvisibility=hidden " " -fvisibility=default " CMAKE_C_FLAGS "${CMAKE_C_FLAGS}")
string(REPLACE " -fvisibility=hidden " " -fvisibility=default " CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}")
set(3RD_DIR ${TOP_DIR}/third_party)
set(LITE_DIR ${TOP_DIR}/mindspore/lite)
set(BUILD_LITE "on")
include(${TOP_DIR}/cmake/external_libs/gtest.cmake)
include(${MICRO_DIR}/cmake/file_list.cmake)
include(${MICRO_DIR}/cmake/package_wrapper.cmake)
include_directories(${NNACL_DIR}/../)
include_directories(${TOP_DIR})
include_directories(${TOP_DIR}/mindspore/core/)
include_directories(${LITE_DIR})
include_directories(${MICRO_DIR})
include_directories(${3RD_DIR})
add_executable(micro_test code_gen_test.cc ${FILE_SET})
add_dependencies(micro_test fbs_src)
add_dependencies(micro_test fbs_inner_src)
target_link_libraries(micro_test dl mindspore::gtest ${SECUREC_LIBRARY} mindspore::glog)

View File

@ -1,33 +0,0 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "gtest/gtest.h"
#include "micro/coder/coder.h"
namespace mindspore::lite::micro::test {
TEST(GenerateCodeTest, mnist_x86) {
const char *argv[] = {"./codegen", "--modelPath=../example/mnist/mnist.ms", "--moduleName=mnist", "--codePath=.",
"--isWeightFile"};
STATUS status = RunCoder(5, argv);
ASSERT_EQ(status, RET_OK);
}
} // namespace mindspore::lite::micro::test
GTEST_API_ int main(int argc, char **argv) {
testing::InitGoogleTest(&argc, argv);
int ret = RUN_ALL_TESTS();
return ret;
}