diff --git a/docs/api/api_python/ops/mindspore.ops.func_soft_shrink.rst b/docs/api/api_python/ops/mindspore.ops.func_softshrink.rst similarity index 100% rename from docs/api/api_python/ops/mindspore.ops.func_soft_shrink.rst rename to docs/api/api_python/ops/mindspore.ops.func_softshrink.rst diff --git a/mindspore/python/mindspore/ops/function/array_func.py b/mindspore/python/mindspore/ops/function/array_func.py index 78c3979e9a1..42d28d21847 100644 --- a/mindspore/python/mindspore/ops/function/array_func.py +++ b/mindspore/python/mindspore/ops/function/array_func.py @@ -3170,12 +3170,12 @@ def gather(input_params, input_indices, axis, batch_dims=0): where params represents the input `input_params`, and indices represents the index to be sliced `input_indices`. .. note:: - 1. The value of input_indices must be in the range of `[0, input_param.shape[axis])`, the result is undefined - out of range. + 1. The value of input_indices must be in the range of `[0, input_param.shape[axis])`, the result is undefined + out of range. - 2. The data type of input_params cannot be - `bool_ `_ on Ascend - platform currently. + 2. The data type of input_params cannot be + `bool_ `_ on Ascend + platform currently. Args: input_params (Tensor): The original Tensor. The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. diff --git a/mindspore/python/mindspore/ops/function/math_func.py b/mindspore/python/mindspore/ops/function/math_func.py index ae1d6b5d461..c241a7044b4 100644 --- a/mindspore/python/mindspore/ops/function/math_func.py +++ b/mindspore/python/mindspore/ops/function/math_func.py @@ -262,7 +262,7 @@ def add(input, other): .. note:: - Inputs of `input` and `other` comply with the implicit type conversion rules to make - the data types consistent. + the data types consistent. - The inputs must be two tensors or one tensor and one scalar. - When the inputs are two tensors, dtypes of them cannot be bool at the same time, and the shapes of them can be broadcast. diff --git a/mindspore/python/mindspore/ops/operations/array_ops.py b/mindspore/python/mindspore/ops/operations/array_ops.py index 608d3691a0d..2e42e36aeb6 100755 --- a/mindspore/python/mindspore/ops/operations/array_ops.py +++ b/mindspore/python/mindspore/ops/operations/array_ops.py @@ -7402,7 +7402,7 @@ class SegmentMax(Primitive): Specifically, it generates a new Tensor `output` such that :math:`output_i=max_j(input\_x_j)` in which the maximum value is obtained from all elements corresponding - to :math:j that meets :math:`segment\_ids[j] == i`. + to :math:`j` that meets :math:`segment\_ids[j] == i`. If a segment contains no elements for a given segment :math:`i`, then the corresponding element in the output Tensor is set to zero: :math:`output[i] = 0`. @@ -7455,7 +7455,7 @@ class SegmentMin(Primitive): Specifically, it generates a new Tensor `output` such that :math:`output_i=min_j(input\_x_j)` in which the minimum value is obtained from all elements corresponding - to :math:j that meets :math:`segment\_ids[j] == i`. + to :math:`j` that meets :math:`segment\_ids[j] == i`. If a segment contains no elements for a given segment :math:`i`, then the corresponding element in the output Tensor is set to zero: :math:`output[i] = 0`. @@ -7508,7 +7508,7 @@ class SegmentSum(Primitive): Specifically, it generates a new Tensor `output` such that :math:`output_i = \sum_j input\_x_j` in which the cumulative sum is obtained from all elements corresponding - to :math:j that meets :math:`segment\_ids[j] == i`. + to :math:`j` that meets :math:`segment\_ids[j] == i`. If a segment contains no elements for a given segment :math:`i`, then the corresponding element in the output Tensor is set to 0: :math:`output[i] = 0`. @@ -7790,7 +7790,7 @@ class SegmentMean(Primitive): Specifically, it generates a new Tensor `output` such that :math:`output_i=mean_j(input\_x_j)` in which the mean value is obtained from all elements corresponding - to :math:j that meets :math:`segment\_ids[j] == i`. + to :math:`j` that meets :math:`segment\_ids[j] == i`. If a segment contains no elements for a given segment :math:`i`, then the corresponding element in the output Tensor is set to zero: :math:`output[i] = 0`. @@ -7847,7 +7847,7 @@ class SegmentProd(Primitive): Specifically, it generates a new Tensor `output` such that :math:`output_i = \prod_j input\_x_j` in which the cumulative product is obtained from all elements corresponding - to :math:j that meets :math:`segment\_ids[j] == i`. + to :math:`j` that meets :math:`segment\_ids[j] == i`. If a segment contains no elements for a given segment :math:`i`, then the corresponding element in the output Tensor is set to 1: :math:`output[i] = 1`.