forked from mindspore-Ecosystem/mindspore
add fullconnection 4d and reshape 4dTo2d, maxpooling+ReLU
This commit is contained in:
parent
8df757143a
commit
02e594681f
|
@ -0,0 +1,106 @@
|
||||||
|
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||||
|
#define C4NUM 4
|
||||||
|
#define UP_DIV(x, y) (((x) + (y) - (1)) / (y))
|
||||||
|
__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
|
||||||
|
__kernel void FullConnection_NHWC4(__read_only image2d_t input, __global FLT16 *weight, __read_only image2d_t bias,
|
||||||
|
__write_only image2d_t output, int4 in_shape, int2 out_shape) {
|
||||||
|
int gidx = get_global_id(0); // CO4
|
||||||
|
int gidz = get_global_id(2); // N
|
||||||
|
int lidx = get_local_id(0);
|
||||||
|
int lidy = get_local_id(1);
|
||||||
|
int ci4 = UP_DIV(in_shape.w, C4NUM);
|
||||||
|
int hwci4 = ci4 * in_shape.y * in_shape.z;
|
||||||
|
int co4 = UP_DIV(out_shape.y, C4NUM);
|
||||||
|
int n = out_shape.x;
|
||||||
|
bool inside = gidx < co4 && gidz < n;
|
||||||
|
FLT4 result = (FLT4)(0.0f);
|
||||||
|
for (uint i = lidy; i < hwci4 && inside; i += 4) {
|
||||||
|
int index_h = i / (ci4 * in_shape.z);
|
||||||
|
int index_wci4 = i % (ci4 * in_shape.z);
|
||||||
|
FLT4 v = READ_IMAGE(input, smp_zero, (int2)(index_wci4, gidz * in_shape.y + index_h));
|
||||||
|
FLT16 w = weight[i * co4 + gidx];
|
||||||
|
result.x += dot(v, w.s0123);
|
||||||
|
result.y += dot(v, w.s4567);
|
||||||
|
result.z += dot(v, w.s89ab);
|
||||||
|
result.w += dot(v, w.scdef);
|
||||||
|
}
|
||||||
|
__local FLT4 temp[32][4];
|
||||||
|
temp[lidx][lidy] = result;
|
||||||
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
|
if (lidy == 0 && inside) {
|
||||||
|
result += temp[lidx][1];
|
||||||
|
result += temp[lidx][2];
|
||||||
|
result += temp[lidx][3];
|
||||||
|
result += READ_IMAGE(bias, smp_zero, (int2)(gidx, 0));
|
||||||
|
WRITE_IMAGE(output, (int2)(gidx, gidz), result);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__kernel void FullConnection_NHWC4_ReLU(__read_only image2d_t input, __global FLT16 *weight, __read_only image2d_t bias,
|
||||||
|
__write_only image2d_t output, int4 in_shape, int2 out_shape) {
|
||||||
|
int gidx = get_global_id(0); // CO4
|
||||||
|
int gidz = get_global_id(2); // N
|
||||||
|
int lidx = get_local_id(0);
|
||||||
|
int lidy = get_local_id(1);
|
||||||
|
int ci4 = UP_DIV(in_shape.w, C4NUM);
|
||||||
|
int hwci4 = ci4 * in_shape.y * in_shape.z;
|
||||||
|
int co4 = UP_DIV(out_shape.y, C4NUM);
|
||||||
|
int n = out_shape.x;
|
||||||
|
bool inside = gidx < co4 && gidz < n;
|
||||||
|
FLT4 result = (FLT4)(0.0f);
|
||||||
|
for (uint i = lidy; i < hwci4 && inside; i += 4) {
|
||||||
|
int index_h = i / (ci4 * in_shape.z);
|
||||||
|
int index_wci4 = i % (ci4 * in_shape.z);
|
||||||
|
FLT4 v = READ_IMAGE(input, smp_zero, (int2)(index_wci4, gidz * in_shape.y + index_h));
|
||||||
|
FLT16 w = weight[i * co4 + gidx];
|
||||||
|
result.x += dot(v, w.s0123);
|
||||||
|
result.y += dot(v, w.s4567);
|
||||||
|
result.z += dot(v, w.s89ab);
|
||||||
|
result.w += dot(v, w.scdef);
|
||||||
|
}
|
||||||
|
__local FLT4 temp[32][4];
|
||||||
|
temp[lidx][lidy] = result;
|
||||||
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
|
if (lidy == 0 && inside) {
|
||||||
|
result += temp[lidx][1];
|
||||||
|
result += temp[lidx][2];
|
||||||
|
result += temp[lidx][3];
|
||||||
|
result += READ_IMAGE(bias, smp_zero, (int2)(gidx, 0));
|
||||||
|
result = max(result, (FLT4)(0.f));
|
||||||
|
WRITE_IMAGE(output, (int2)(gidx, gidz), result);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__kernel void FullConnection_NC4HW4(__read_only image2d_t input, __global FLT16 *weight, __read_only image2d_t bias,
|
||||||
|
__write_only image2d_t output, int4 in_shape, int2 out_shape) {
|
||||||
|
int gidx = get_global_id(0); // CO4
|
||||||
|
int gidz = get_global_id(2); // N
|
||||||
|
int lidx = get_local_id(0);
|
||||||
|
int lidy = get_local_id(1);
|
||||||
|
int ci4 = UP_DIV(in_shape.w, C4NUM);
|
||||||
|
int hwci4 = ci4 * in_shape.y * in_shape.z;
|
||||||
|
int co4 = UP_DIV(out_shape.y, C4NUM);
|
||||||
|
int n = out_shape.x;
|
||||||
|
bool inside = gidx < co4 && gidz < n;
|
||||||
|
FLT4 result = (FLT4)(0.0f);
|
||||||
|
for (uint i = lidy; i < hwci4 && inside; i += 4) {
|
||||||
|
int index_ci4h = i / in_shape.z;
|
||||||
|
int index_w = i % in_shape.z;
|
||||||
|
FLT4 v = READ_IMAGE(input, smp_zero, (int2)(index_w, gidz * in_shape.y * ci4 + index_ci4h));
|
||||||
|
FLT16 w = weight[i * co4 + gidx];
|
||||||
|
result.x += dot(v, w.s0123);
|
||||||
|
result.y += dot(v, w.s4567);
|
||||||
|
result.z += dot(v, w.s89ab);
|
||||||
|
result.w += dot(v, w.scdef);
|
||||||
|
}
|
||||||
|
__local FLT4 temp[32][4];
|
||||||
|
temp[lidx][lidy] = result;
|
||||||
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
|
if (lidy == 0 && inside) {
|
||||||
|
result += temp[lidx][1];
|
||||||
|
result += temp[lidx][2];
|
||||||
|
result += temp[lidx][3];
|
||||||
|
result += READ_IMAGE(bias, smp_zero, (int2)(gidx, 0));
|
||||||
|
WRITE_IMAGE(output, (int2)(0, gidz * co4 + gidx), result);
|
||||||
|
}
|
||||||
|
}
|
|
@ -2,8 +2,8 @@
|
||||||
#define C4NUM 4
|
#define C4NUM 4
|
||||||
#define UP_DIV(x, y) (((x) + (y) - (1)) / (y))
|
#define UP_DIV(x, y) (((x) + (y) - (1)) / (y))
|
||||||
__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
|
__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
|
||||||
__kernel void MatMul_NHWC4_2d(__read_only image2d_t input, __global FLT16 *weight, __read_only image2d_t bias,
|
__kernel void MatMul_NHWC4_2d(__read_only image2d_t input, __global FLT16 *weight, __write_only image2d_t output,
|
||||||
__write_only image2d_t output, int4 in_shape, int4 out_shape, int has_bias) {
|
int4 in_shape, int4 out_shape) {
|
||||||
int gidx = get_global_id(0); // CO4
|
int gidx = get_global_id(0); // CO4
|
||||||
int gidz = get_global_id(2); // N
|
int gidz = get_global_id(2); // N
|
||||||
int lidx = get_local_id(0);
|
int lidx = get_local_id(0);
|
||||||
|
@ -21,7 +21,6 @@ __kernel void MatMul_NHWC4_2d(__read_only image2d_t input, __global FLT16 *weigh
|
||||||
result.z += dot(v, w.s89ab);
|
result.z += dot(v, w.s89ab);
|
||||||
result.w += dot(v, w.scdef);
|
result.w += dot(v, w.scdef);
|
||||||
}
|
}
|
||||||
WRITE_IMAGE(output, (int2)(gidx, gidz), result);
|
|
||||||
__local FLT4 temp[32][4];
|
__local FLT4 temp[32][4];
|
||||||
temp[lidx][lidy] = result;
|
temp[lidx][lidy] = result;
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
|
@ -29,15 +28,12 @@ __kernel void MatMul_NHWC4_2d(__read_only image2d_t input, __global FLT16 *weigh
|
||||||
result += temp[lidx][1];
|
result += temp[lidx][1];
|
||||||
result += temp[lidx][2];
|
result += temp[lidx][2];
|
||||||
result += temp[lidx][3];
|
result += temp[lidx][3];
|
||||||
if (has_bias != 0) {
|
|
||||||
result += READ_IMAGE(bias, smp_zero, (int2)(gidx, 0));
|
|
||||||
}
|
|
||||||
WRITE_IMAGE(output, (int2)(gidx, gidz), result);
|
WRITE_IMAGE(output, (int2)(gidx, gidz), result);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
__kernel void MatMul_NC4HW4_2d(__read_only image2d_t input, __global FLT16 *weight, __read_only image2d_t bias,
|
__kernel void MatMul_NC4HW4_2d(__read_only image2d_t input, __global FLT16 *weight, __write_only image2d_t output,
|
||||||
__write_only image2d_t output, int4 in_shape, int4 out_shape, int has_bias) {
|
int4 in_shape, int4 out_shape) {
|
||||||
int gidx = get_global_id(0); // CO4
|
int gidx = get_global_id(0); // CO4
|
||||||
int gidz = get_global_id(2); // N
|
int gidz = get_global_id(2); // N
|
||||||
int lidx = get_local_id(0);
|
int lidx = get_local_id(0);
|
||||||
|
@ -62,15 +58,12 @@ __kernel void MatMul_NC4HW4_2d(__read_only image2d_t input, __global FLT16 *weig
|
||||||
result += temp[lidx][1];
|
result += temp[lidx][1];
|
||||||
result += temp[lidx][2];
|
result += temp[lidx][2];
|
||||||
result += temp[lidx][3];
|
result += temp[lidx][3];
|
||||||
if (has_bias != 0) {
|
WRITE_IMAGE(output, (int2)(0, gidz * co4 + gidx), result);
|
||||||
result += READ_IMAGE(bias, smp_zero, (int2)(gidx, 0));
|
|
||||||
}
|
|
||||||
WRITE_IMAGE(output, (int2)(gidz * co4 + gidx, 0), result);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
__kernel void MatMul_NHWC4_4d(__read_only image2d_t input, __global FLT16 *weight, __read_only image2d_t bias,
|
__kernel void MatMul_NHWC4_4d(__read_only image2d_t input, __global FLT16 *weight, __write_only image2d_t output,
|
||||||
__write_only image2d_t output, int4 in_shape, int4 out_shape, int has_bias) {
|
int4 in_shape, int4 out_shape) {
|
||||||
int gidx = get_global_id(0); // CO4
|
int gidx = get_global_id(0); // CO4
|
||||||
int gidy = get_global_id(1); // N * H * 4
|
int gidy = get_global_id(1); // N * H * 4
|
||||||
int gidz = get_global_id(2); // W
|
int gidz = get_global_id(2); // W
|
||||||
|
@ -99,15 +92,12 @@ __kernel void MatMul_NHWC4_4d(__read_only image2d_t input, __global FLT16 *weigh
|
||||||
result += temp[lidx][1];
|
result += temp[lidx][1];
|
||||||
result += temp[lidx][2];
|
result += temp[lidx][2];
|
||||||
result += temp[lidx][3];
|
result += temp[lidx][3];
|
||||||
if (has_bias != 0) {
|
|
||||||
result += READ_IMAGE(bias, smp_zero, (int2)(gidx, 0));
|
|
||||||
}
|
|
||||||
WRITE_IMAGE(output, (int2)(gidz * co4 + gidx, nh_index), result);
|
WRITE_IMAGE(output, (int2)(gidz * co4 + gidx, nh_index), result);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
__kernel void MatMul_NC4HW4_4d(__read_only image2d_t input, __global FLT16 *weight, __read_only image2d_t bias,
|
__kernel void MatMul_NC4HW4_4d(__read_only image2d_t input, __global FLT16 *weight, __write_only image2d_t output,
|
||||||
__write_only image2d_t output, int4 in_shape, int4 out_shape, int has_bias) {
|
int4 in_shape, int4 out_shape) {
|
||||||
int gidx = get_global_id(0); // CO4
|
int gidx = get_global_id(0); // CO4
|
||||||
int gidy = get_global_id(1); // N * H * 4
|
int gidy = get_global_id(1); // N * H * 4
|
||||||
int gidz = get_global_id(2); // W
|
int gidz = get_global_id(2); // W
|
||||||
|
@ -138,9 +128,6 @@ __kernel void MatMul_NC4HW4_4d(__read_only image2d_t input, __global FLT16 *weig
|
||||||
result += temp[lidx][1];
|
result += temp[lidx][1];
|
||||||
result += temp[lidx][2];
|
result += temp[lidx][2];
|
||||||
result += temp[lidx][3];
|
result += temp[lidx][3];
|
||||||
if (has_bias != 0) {
|
|
||||||
result += READ_IMAGE(bias, smp_zero, (int2)(gidx, 0));
|
|
||||||
}
|
|
||||||
WRITE_IMAGE(output, (int2)(gidz, n_index * co4 * h + gidx * h + h_index), result);
|
WRITE_IMAGE(output, (int2)(gidz, n_index * co4 * h + gidx * h + h_index), result);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -65,6 +65,35 @@ __kernel void MaxPooling2d_NHWC4_IMG(__read_only image2d_t input, __write_only i
|
||||||
WRITE_IMAGE(output, (int2)(Y * output_shape.w + Z, X), maximum);
|
WRITE_IMAGE(output, (int2)(Y * output_shape.w + Z, X), maximum);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
__kernel void MaxPooling2d_ReLU_NHWC4_IMG(__read_only image2d_t input, __write_only image2d_t output,
|
||||||
|
const int4 input_shape, const int4 output_shape, const int2 stride,
|
||||||
|
const int2 kernel_size, const int2 padding) {
|
||||||
|
// axis to dst tensor coordinate
|
||||||
|
int X = get_global_id(0);
|
||||||
|
int Y = get_global_id(1);
|
||||||
|
int Z = get_global_id(2);
|
||||||
|
|
||||||
|
// boundary check
|
||||||
|
if (X >= output_shape.x || Y >= output_shape.y || Z >= output_shape.w) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
FLT4 maximum = (FLT4)(-10000.0f);
|
||||||
|
int xs = X * stride.x - padding.x;
|
||||||
|
int ys = Y * stride.y - padding.y;
|
||||||
|
for (int ky = 0; ky < kernel_size.y; ++ky) {
|
||||||
|
int y_c = ys + ky;
|
||||||
|
if (y_c < 0 || y_c >= input_shape.y) continue;
|
||||||
|
for (int kx = 0; kx < kernel_size.x; ++kx) {
|
||||||
|
int x_c = xs + kx;
|
||||||
|
if (x_c < 0 || x_c >= input_shape.x) continue;
|
||||||
|
FLT4 src = READ_IMAGE(input, smp_none, (int2)(y_c * input_shape.w + Z, x_c));
|
||||||
|
maximum = max(src, maximum);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
WRITE_IMAGE(output, (int2)(Y * output_shape.w + Z, X), max(maximum, (FLT4)(0.f)));
|
||||||
|
}
|
||||||
|
|
||||||
__kernel void MaxPooling2d_NC4HW4_IMG(__read_only image2d_t input, __write_only image2d_t output,
|
__kernel void MaxPooling2d_NC4HW4_IMG(__read_only image2d_t input, __write_only image2d_t output,
|
||||||
const int4 input_shape, const int4 output_shape, const int2 stride,
|
const int4 input_shape, const int4 output_shape, const int2 stride,
|
||||||
const int2 kernel_size, const int2 padding) {
|
const int2 kernel_size, const int2 padding) {
|
||||||
|
|
|
@ -2,27 +2,23 @@
|
||||||
__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
|
__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
|
||||||
__kernel void reshape_NHWC4(__read_only image2d_t src_data, __write_only image2d_t dst_data, int4 size, int4 size_out) {
|
__kernel void reshape_NHWC4(__read_only image2d_t src_data, __write_only image2d_t dst_data, int4 size, int4 size_out) {
|
||||||
int X = get_global_id(0);
|
int X = get_global_id(0);
|
||||||
int Y = get_global_id(1);
|
if (X >= size_out.x * size_out.y * size_out.z * size_out.w) {
|
||||||
int Z = get_global_id(2);
|
|
||||||
if (X >= size_out.x || Y >= size_out.y || Z >= size_out.z) {
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
int out_index = X * size_out.y + Y;
|
int in_img_x = size.z * size.w;
|
||||||
int ih = out_index / size.y;
|
int out_img_x = size_out.z * size_out.w;
|
||||||
int iw = out_index % size.y;
|
WRITE_IMAGE(dst_data, (int2)(X % out_img_x, X / out_img_x),
|
||||||
WRITE_IMAGE(dst_data, (int2)(Y * size.z + Z, X), READ_IMAGE(src_data, smp_zero, (int2)(iw * size.z + Z, ih)));
|
READ_IMAGE(src_data, smp_zero, (int2)(X % in_img_x, X / in_img_x)));
|
||||||
}
|
}
|
||||||
|
|
||||||
__kernel void reshape_NC4HW4(__read_only image2d_t src_data, __write_only image2d_t dst_data, int4 size,
|
__kernel void reshape_NC4HW4(__read_only image2d_t src_data, __write_only image2d_t dst_data, int4 size,
|
||||||
int4 size_out) {
|
int4 size_out) {
|
||||||
int X = get_global_id(0);
|
int X = get_global_id(0);
|
||||||
int Y = get_global_id(1);
|
if (X >= size_out.x * size_out.y * size_out.z * size_out.w) {
|
||||||
int Z = get_global_id(2);
|
|
||||||
if (X >= size_out.x || Y >= size_out.y || Z >= size_out.z) {
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
int out_index = X * size_out.y + Y;
|
int in_img_x = size.z;
|
||||||
int ih = out_index / size.y;
|
int out_img_x = size_out.z;
|
||||||
int iw = out_index % size.y;
|
WRITE_IMAGE(dst_data, (int2)(X % out_img_x, X / out_img_x),
|
||||||
WRITE_IMAGE(dst_data, (int2)(Y, Z * size_out.x + X), READ_IMAGE(src_data, smp_zero, (int2)(iw, Z * size.x + ih)));
|
READ_IMAGE(src_data, smp_zero, (int2)(X % in_img_x, X / in_img_x)));
|
||||||
}
|
}
|
||||||
|
|
|
@ -0,0 +1,254 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2019 Huawei Technologies n., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <set>
|
||||||
|
#include <string>
|
||||||
|
#include <map>
|
||||||
|
#include "nnacl/fp32/common_func.h"
|
||||||
|
#include "src/kernel_registry.h"
|
||||||
|
#include "src/runtime/kernel/opencl/kernel/fullconnection.h"
|
||||||
|
#ifndef PROGRAM_WITH_IL
|
||||||
|
#include "src/runtime/kernel/opencl/cl/fullconnection.cl.inc"
|
||||||
|
#endif
|
||||||
|
|
||||||
|
using mindspore::kernel::KERNEL_ARCH::kGPU;
|
||||||
|
using mindspore::lite::KernelRegistrar;
|
||||||
|
using mindspore::schema::PrimitiveType_FullConnection;
|
||||||
|
|
||||||
|
namespace mindspore::kernel {
|
||||||
|
|
||||||
|
int FullConnectionOpenCLKernel::Init() {
|
||||||
|
std::string kernel_name = "FullConnection";
|
||||||
|
kernel_name += "_" + std::string(EnumNameFormat(op_format_));
|
||||||
|
auto param = reinterpret_cast<MatMulParameter *>(op_parameter_);
|
||||||
|
transposeA = param->a_transpose_;
|
||||||
|
if (transposeA) {
|
||||||
|
MS_LOG(ERROR) << "fullconnection only support a_transpose_=false yet.";
|
||||||
|
return RET_ERROR;
|
||||||
|
}
|
||||||
|
transposeB = param->b_transpose_;
|
||||||
|
enable_fp16_ = ocl_runtime_->GetFp16Enable();
|
||||||
|
if ((in_tensors_[0]->shape().size() != 4 && in_tensors_[0]->shape().size() != 2) ||
|
||||||
|
out_tensors_[0]->shape().size() != 2) {
|
||||||
|
MS_LOG(ERROR) << "fullconnection only support input shape size = 2 or 4";
|
||||||
|
return RET_ERROR;
|
||||||
|
}
|
||||||
|
if (in_tensors_[0]->shape().size() == 4) {
|
||||||
|
if (in_tensors_[0]->shape()[3] % C4NUM != 0) {
|
||||||
|
MS_LOG(ERROR) << "fullconnection only support input shape channel % 4 = 0 if input shape size = 4";
|
||||||
|
return RET_ERROR;
|
||||||
|
}
|
||||||
|
inShape = {in_tensors_[0]->shape()[0], in_tensors_[0]->shape()[1], in_tensors_[0]->shape()[2],
|
||||||
|
in_tensors_[0]->shape()[3]};
|
||||||
|
} else {
|
||||||
|
inShape = {in_tensors_[0]->shape()[0], 1, 1, in_tensors_[0]->shape()[1]};
|
||||||
|
}
|
||||||
|
|
||||||
|
outShape = out_tensors_[0]->shape();
|
||||||
|
switch (param->act_type_) {
|
||||||
|
case ActType_No:
|
||||||
|
break;
|
||||||
|
case ActType_Relu:
|
||||||
|
kernel_name += "_ReLU";
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
MS_LOG(ERROR) << "Unsupported activation type " << param->act_type_;
|
||||||
|
return RET_ERROR;
|
||||||
|
}
|
||||||
|
#ifdef PROGRAM_WITH_IL
|
||||||
|
kernel_ = ocl_runtime_->GetKernelFromBinary(kernel_name);
|
||||||
|
#else
|
||||||
|
std::set<std::string> build_options;
|
||||||
|
std::string source = fullconnection_source;
|
||||||
|
std::string program_name = "FullConnection";
|
||||||
|
ocl_runtime_->LoadSource(program_name, source);
|
||||||
|
ocl_runtime_->BuildKernel(kernel_, program_name, kernel_name, build_options);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
PadWeight();
|
||||||
|
in_ori_format_ = in_tensors_[0]->GetFormat();
|
||||||
|
out_ori_format_ = out_tensors_[0]->GetFormat();
|
||||||
|
in_tensors_[0]->SetFormat(op_format_);
|
||||||
|
out_tensors_[0]->SetFormat(op_format_);
|
||||||
|
MS_LOG(DEBUG) << kernel_name << " Init Done!";
|
||||||
|
return RET_OK;
|
||||||
|
}
|
||||||
|
|
||||||
|
int FullConnectionOpenCLKernel::ReSize() { return RET_OK; }
|
||||||
|
|
||||||
|
void FullConnectionOpenCLKernel::PadWeight() {
|
||||||
|
// ABMCI @ ABCICO = ABMCO
|
||||||
|
auto allocator = ocl_runtime_->GetAllocator();
|
||||||
|
int ci = inShape[1] * inShape[2] * inShape[3];
|
||||||
|
int ci4 = UP_DIV(ci, C4NUM);
|
||||||
|
int co = outShape[1];
|
||||||
|
int co4 = UP_DIV(co, C4NUM);
|
||||||
|
int a = 1;
|
||||||
|
int b = 1;
|
||||||
|
|
||||||
|
size_t dtype_size = enable_fp16_ ? sizeof(uint16_t) : sizeof(float);
|
||||||
|
padWeight_ = allocator->Malloc(a * b * ci4 * co4 * C4NUM * C4NUM * dtype_size);
|
||||||
|
padWeight_ = allocator->MapBuffer(padWeight_, CL_MAP_WRITE, nullptr, true);
|
||||||
|
auto padWeightFp32 = reinterpret_cast<float *>(padWeight_);
|
||||||
|
auto padWeightFp16 = reinterpret_cast<float16_t *>(padWeight_);
|
||||||
|
memset(padWeight_, 0x00, a * b * ci4 * co4 * C4NUM * C4NUM * dtype_size);
|
||||||
|
auto originWeightFp32 = reinterpret_cast<float *>(in_tensors_.at(kWeightIndex)->data_c());
|
||||||
|
auto originWeightFp16 = reinterpret_cast<float16_t *>(in_tensors_.at(kWeightIndex)->data_c());
|
||||||
|
bool isModelFp16 = in_tensors_.at(kWeightIndex)->data_type() == kNumberTypeFloat16;
|
||||||
|
|
||||||
|
// pad weight
|
||||||
|
// ABCICO -> AB(CI4)(CO4)(4 from CO)(4 from CI)
|
||||||
|
// if tranposeB, ABCOCI -> AB(CI4)(CO4)(4 from CO)(4 from CI)
|
||||||
|
int index = 0;
|
||||||
|
for (int aa = 0; aa < a; aa++) {
|
||||||
|
for (int bb = 0; bb < b; bb++) {
|
||||||
|
int baseAB = (aa * b + bb) * ci * co;
|
||||||
|
for (int i = 0; i < ci4; ++i) {
|
||||||
|
for (int j = 0; j < co4; ++j) {
|
||||||
|
for (int k = 0; k < C4NUM; ++k) {
|
||||||
|
for (int l = 0; l < C4NUM; ++l) {
|
||||||
|
int src_ci = i * C4NUM + l;
|
||||||
|
int src_co = j * C4NUM + k;
|
||||||
|
if (src_ci < ci && src_co < co) {
|
||||||
|
int originId = baseAB + src_ci * co + src_co;
|
||||||
|
if (transposeB) {
|
||||||
|
originId = baseAB + src_co * ci + src_ci;
|
||||||
|
}
|
||||||
|
if (enable_fp16_) {
|
||||||
|
if (!isModelFp16) {
|
||||||
|
padWeightFp16[index++] = originWeightFp32[originId];
|
||||||
|
} else {
|
||||||
|
padWeightFp16[index++] = originWeightFp16[originId];
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if (!isModelFp16) {
|
||||||
|
padWeightFp32[index++] = originWeightFp32[originId];
|
||||||
|
} else {
|
||||||
|
padWeightFp32[index++] = originWeightFp16[originId];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
index++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
allocator->UnmapBuffer(padWeight_);
|
||||||
|
|
||||||
|
// pad FC Bias
|
||||||
|
size_t im_dst_x, im_dst_y;
|
||||||
|
im_dst_x = co4;
|
||||||
|
im_dst_y = 1;
|
||||||
|
size_t img_dtype = CL_FLOAT;
|
||||||
|
if (enable_fp16_) {
|
||||||
|
img_dtype = CL_HALF_FLOAT;
|
||||||
|
}
|
||||||
|
std::vector<size_t> img_size{im_dst_x, im_dst_y, img_dtype};
|
||||||
|
bias_ = allocator->Malloc(im_dst_x * im_dst_y * C4NUM * dtype_size, img_size);
|
||||||
|
bias_ = allocator->MapBuffer(bias_, CL_MAP_WRITE, nullptr, true);
|
||||||
|
memset(bias_, 0x00, co4 * C4NUM * dtype_size);
|
||||||
|
if (in_tensors_.size() >= 3) {
|
||||||
|
if (in_tensors_[2]->data_type() == kNumberTypeFloat32 && enable_fp16_) {
|
||||||
|
for (int i = 0; i < co; i++) {
|
||||||
|
reinterpret_cast<float16_t *>(bias_)[i] = reinterpret_cast<float *>(in_tensors_[2]->data_c())[i];
|
||||||
|
}
|
||||||
|
} else if (in_tensors_[2]->data_type() == kNumberTypeFloat16 && !enable_fp16_) {
|
||||||
|
for (int i = 0; i < co; i++) {
|
||||||
|
reinterpret_cast<float *>(bias_)[i] = reinterpret_cast<float16_t *>(in_tensors_[2]->data_c())[i];
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
memcpy(bias_, in_tensors_[2]->data_c(), co * dtype_size);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
allocator->UnmapBuffer(bias_);
|
||||||
|
}
|
||||||
|
|
||||||
|
int FullConnectionOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size) {
|
||||||
|
size_t im_dst_x, im_dst_y;
|
||||||
|
auto out_shape = out_tensors_[0]->shape();
|
||||||
|
int n = 1, h = 1, w = 1, c = 1;
|
||||||
|
if (out_tensors_[0]->shape().size() == 2) {
|
||||||
|
n = out_shape[0];
|
||||||
|
c = out_shape[1];
|
||||||
|
} else {
|
||||||
|
n = out_shape[0];
|
||||||
|
h = out_shape[1];
|
||||||
|
w = out_shape[2];
|
||||||
|
c = out_shape[3];
|
||||||
|
}
|
||||||
|
if (op_format_ == schema::Format_NHWC4) {
|
||||||
|
im_dst_x = w * UP_DIV(c, C4NUM);
|
||||||
|
im_dst_y = n * h;
|
||||||
|
} else if (op_format_ == schema::Format_NC4HW4) {
|
||||||
|
im_dst_x = w;
|
||||||
|
im_dst_y = n * UP_DIV(c, C4NUM) * h;
|
||||||
|
} else {
|
||||||
|
MS_LOG(ERROR) << "not support op format:" << EnumNameFormat(op_format_);
|
||||||
|
return RET_ERROR;
|
||||||
|
}
|
||||||
|
size_t img_dtype = CL_FLOAT;
|
||||||
|
if (enable_fp16_) {
|
||||||
|
img_dtype = CL_HALF_FLOAT;
|
||||||
|
}
|
||||||
|
img_size->clear();
|
||||||
|
std::vector<size_t> vec{im_dst_x, im_dst_y, img_dtype};
|
||||||
|
*img_size = vec;
|
||||||
|
return RET_OK;
|
||||||
|
}
|
||||||
|
|
||||||
|
int FullConnectionOpenCLKernel::Run() {
|
||||||
|
MS_LOG(DEBUG) << this->name() << " Running!";
|
||||||
|
// local size should less than MAX_GROUP_SIZE
|
||||||
|
std::vector<size_t> local = {32, 4, 1};
|
||||||
|
std::vector<size_t> global = {UP_DIV(static_cast<size_t>(outShape[1]), C4NUM), 4, static_cast<size_t>(outShape[0])};
|
||||||
|
int arg_count = 0;
|
||||||
|
cl_int4 in_shape = {inShape[0], inShape[1], inShape[2], inShape[3]};
|
||||||
|
cl_int2 out_shape = {outShape[0], outShape[1]};
|
||||||
|
ocl_runtime_->SetKernelArg(kernel_, arg_count++, in_tensors_[0]->data_c());
|
||||||
|
ocl_runtime_->SetKernelArg(kernel_, arg_count++, padWeight_, lite::opencl::MemType::BUF);
|
||||||
|
ocl_runtime_->SetKernelArg(kernel_, arg_count++, bias_);
|
||||||
|
ocl_runtime_->SetKernelArg(kernel_, arg_count++, out_tensors_[0]->data_c());
|
||||||
|
ocl_runtime_->SetKernelArg(kernel_, arg_count++, in_shape);
|
||||||
|
ocl_runtime_->SetKernelArg(kernel_, arg_count++, out_shape);
|
||||||
|
ocl_runtime_->RunKernel(kernel_, global, local, nullptr);
|
||||||
|
return RET_OK;
|
||||||
|
}
|
||||||
|
|
||||||
|
kernel::LiteKernel *OpenCLFullConnectionKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||||
|
const std::vector<lite::Tensor *> &outputs,
|
||||||
|
OpParameter *opParameter, const lite::InnerContext *ctx,
|
||||||
|
const kernel::KernelKey &desc,
|
||||||
|
const mindspore::lite::PrimitiveC *primitive) {
|
||||||
|
auto *kernel =
|
||||||
|
new (std::nothrow) FullConnectionOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
|
||||||
|
if (kernel == nullptr) {
|
||||||
|
MS_LOG(ERROR) << "kernel " << opParameter->name_ << "is nullptr.";
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
auto ret = kernel->Init();
|
||||||
|
if (ret != RET_OK) {
|
||||||
|
delete kernel;
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
return kernel;
|
||||||
|
}
|
||||||
|
|
||||||
|
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_FullConnection, OpenCLFullConnectionKernelCreator)
|
||||||
|
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_FullConnection, OpenCLFullConnectionKernelCreator)
|
||||||
|
} // namespace mindspore::kernel
|
|
@ -0,0 +1,52 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_FULLCONNECTION_H_
|
||||||
|
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_FULLCONNECTION_H_
|
||||||
|
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include "src/runtime/kernel/opencl/opencl_kernel.h"
|
||||||
|
#include "nnacl/matmul_parameter.h"
|
||||||
|
|
||||||
|
namespace mindspore::kernel {
|
||||||
|
|
||||||
|
class FullConnectionOpenCLKernel : public OpenCLKernel {
|
||||||
|
public:
|
||||||
|
explicit FullConnectionOpenCLKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||||
|
const std::vector<lite::Tensor *> &outputs)
|
||||||
|
: OpenCLKernel(parameter, inputs, outputs) {}
|
||||||
|
~FullConnectionOpenCLKernel() override{};
|
||||||
|
|
||||||
|
int Init() override;
|
||||||
|
int ReSize() override;
|
||||||
|
int Run() override;
|
||||||
|
void PadWeight();
|
||||||
|
int GetImageSize(size_t idx, std::vector<size_t> *img_size) override;
|
||||||
|
|
||||||
|
private:
|
||||||
|
cl::Kernel kernel_;
|
||||||
|
void *padWeight_;
|
||||||
|
void *bias_;
|
||||||
|
bool enable_fp16_{false};
|
||||||
|
bool transposeA{false};
|
||||||
|
bool transposeB{true};
|
||||||
|
std::vector<int> inShape;
|
||||||
|
std::vector<int> outShape;
|
||||||
|
};
|
||||||
|
} // namespace mindspore::kernel
|
||||||
|
|
||||||
|
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_FULLCONNECTION_H_
|
|
@ -26,7 +26,6 @@
|
||||||
|
|
||||||
using mindspore::kernel::KERNEL_ARCH::kGPU;
|
using mindspore::kernel::KERNEL_ARCH::kGPU;
|
||||||
using mindspore::lite::KernelRegistrar;
|
using mindspore::lite::KernelRegistrar;
|
||||||
using mindspore::schema::PrimitiveType_FullConnection;
|
|
||||||
using mindspore::schema::PrimitiveType_MatMul;
|
using mindspore::schema::PrimitiveType_MatMul;
|
||||||
|
|
||||||
namespace mindspore::kernel {
|
namespace mindspore::kernel {
|
||||||
|
@ -135,33 +134,7 @@ void MatMulOpenCLKernel::PadWeight() {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
allocator->UnmapBuffer(padWeight_);
|
||||||
// pad FC Bias
|
|
||||||
size_t im_dst_x, im_dst_y;
|
|
||||||
im_dst_x = co4;
|
|
||||||
im_dst_y = 1;
|
|
||||||
size_t img_dtype = CL_FLOAT;
|
|
||||||
if (enable_fp16_) {
|
|
||||||
img_dtype = CL_HALF_FLOAT;
|
|
||||||
}
|
|
||||||
std::vector<size_t> img_size{im_dst_x, im_dst_y, img_dtype};
|
|
||||||
bias_ = allocator->Malloc(im_dst_x * im_dst_y * C4NUM * dtype_size, img_size);
|
|
||||||
bias_ = allocator->MapBuffer(bias_, CL_MAP_WRITE, nullptr, true);
|
|
||||||
memset(bias_, 0x00, co4 * C4NUM * dtype_size);
|
|
||||||
if (in_tensors_.size() >= 3) {
|
|
||||||
if (in_tensors_[2]->data_type() == kNumberTypeFloat32 && enable_fp16_) {
|
|
||||||
for (int i = 0; i < co; i++) {
|
|
||||||
reinterpret_cast<float16_t *>(bias_)[i] = reinterpret_cast<float *>(in_tensors_[2]->data_c())[i];
|
|
||||||
}
|
|
||||||
} else if (in_tensors_[2]->data_type() == kNumberTypeFloat16 && !enable_fp16_) {
|
|
||||||
for (int i = 0; i < co; i++) {
|
|
||||||
reinterpret_cast<float *>(bias_)[i] = reinterpret_cast<float16_t *>(in_tensors_[2]->data_c())[i];
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
memcpy(bias_, in_tensors_[2]->data_c(), co * dtype_size);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
allocator->UnmapBuffer(bias_);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
int MatMulOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size) {
|
int MatMulOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size) {
|
||||||
|
@ -209,11 +182,9 @@ int MatMulOpenCLKernel::Run() {
|
||||||
cl_int4 out_shape = {outShape[0], outShape[1], outShape[2], outShape[3]};
|
cl_int4 out_shape = {outShape[0], outShape[1], outShape[2], outShape[3]};
|
||||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, in_tensors_[0]->data_c());
|
ocl_runtime_->SetKernelArg(kernel_, arg_count++, in_tensors_[0]->data_c());
|
||||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, padWeight_, lite::opencl::MemType::BUF);
|
ocl_runtime_->SetKernelArg(kernel_, arg_count++, padWeight_, lite::opencl::MemType::BUF);
|
||||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, bias_);
|
|
||||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, out_tensors_[0]->data_c());
|
ocl_runtime_->SetKernelArg(kernel_, arg_count++, out_tensors_[0]->data_c());
|
||||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, in_shape);
|
ocl_runtime_->SetKernelArg(kernel_, arg_count++, in_shape);
|
||||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, out_shape);
|
ocl_runtime_->SetKernelArg(kernel_, arg_count++, out_shape);
|
||||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, hasBias_ ? 1 : 0);
|
|
||||||
ocl_runtime_->RunKernel(kernel_, global, local, nullptr);
|
ocl_runtime_->RunKernel(kernel_, global, local, nullptr);
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
@ -222,12 +193,7 @@ kernel::LiteKernel *OpenCLMatMulKernelCreator(const std::vector<lite::Tensor *>
|
||||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
||||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
||||||
const mindspore::lite::PrimitiveC *primitive) {
|
const mindspore::lite::PrimitiveC *primitive) {
|
||||||
bool hasBias = false;
|
auto *kernel = new (std::nothrow) MatMulOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
|
||||||
if (opParameter->type_ == PrimitiveType_FullConnection) {
|
|
||||||
hasBias = (reinterpret_cast<MatMulParameter *>(opParameter))->has_bias_;
|
|
||||||
}
|
|
||||||
auto *kernel =
|
|
||||||
new (std::nothrow) MatMulOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs, hasBias);
|
|
||||||
if (kernel == nullptr) {
|
if (kernel == nullptr) {
|
||||||
MS_LOG(ERROR) << "kernel " << opParameter->name_ << "is nullptr.";
|
MS_LOG(ERROR) << "kernel " << opParameter->name_ << "is nullptr.";
|
||||||
return nullptr;
|
return nullptr;
|
||||||
|
@ -241,7 +207,5 @@ kernel::LiteKernel *OpenCLMatMulKernelCreator(const std::vector<lite::Tensor *>
|
||||||
}
|
}
|
||||||
|
|
||||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_MatMul, OpenCLMatMulKernelCreator)
|
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_MatMul, OpenCLMatMulKernelCreator)
|
||||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_FullConnection, OpenCLMatMulKernelCreator)
|
|
||||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_MatMul, OpenCLMatMulKernelCreator)
|
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_MatMul, OpenCLMatMulKernelCreator)
|
||||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_FullConnection, OpenCLMatMulKernelCreator)
|
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
|
@ -27,10 +27,8 @@ namespace mindspore::kernel {
|
||||||
class MatMulOpenCLKernel : public OpenCLKernel {
|
class MatMulOpenCLKernel : public OpenCLKernel {
|
||||||
public:
|
public:
|
||||||
explicit MatMulOpenCLKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
explicit MatMulOpenCLKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||||
const std::vector<lite::Tensor *> &outputs, bool hasBias)
|
const std::vector<lite::Tensor *> &outputs)
|
||||||
: OpenCLKernel(parameter, inputs, outputs), inShape(MAX_DIMS, 1), outShape(MAX_DIMS, 1) {
|
: OpenCLKernel(parameter, inputs, outputs), inShape(MAX_DIMS, 1), outShape(MAX_DIMS, 1) {}
|
||||||
hasBias_ = hasBias;
|
|
||||||
}
|
|
||||||
~MatMulOpenCLKernel() override{};
|
~MatMulOpenCLKernel() override{};
|
||||||
|
|
||||||
int Init() override;
|
int Init() override;
|
||||||
|
@ -42,8 +40,6 @@ class MatMulOpenCLKernel : public OpenCLKernel {
|
||||||
private:
|
private:
|
||||||
cl::Kernel kernel_;
|
cl::Kernel kernel_;
|
||||||
void *padWeight_;
|
void *padWeight_;
|
||||||
void *bias_;
|
|
||||||
bool hasBias_{false};
|
|
||||||
bool enable_fp16_{false};
|
bool enable_fp16_{false};
|
||||||
bool transposeA{false};
|
bool transposeA{false};
|
||||||
bool transposeB{true};
|
bool transposeB{true};
|
||||||
|
|
|
@ -57,6 +57,16 @@ int PoolingOpenCLKernel::Init() {
|
||||||
MS_LOG(ERROR) << "Init `Pooling2d` kernel failed!";
|
MS_LOG(ERROR) << "Init `Pooling2d` kernel failed!";
|
||||||
return RET_INVALID_OP_NAME;
|
return RET_INVALID_OP_NAME;
|
||||||
}
|
}
|
||||||
|
switch (parameter_->act_type_) {
|
||||||
|
case ActType_No:
|
||||||
|
break;
|
||||||
|
case ActType_Relu:
|
||||||
|
kernel_name += "_ReLU";
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
MS_LOG(ERROR) << "Unsupported activation type " << parameter_->act_type_;
|
||||||
|
return RET_ERROR;
|
||||||
|
}
|
||||||
enable_fp16_ = ocl_runtime_->GetFp16Enable();
|
enable_fp16_ = ocl_runtime_->GetFp16Enable();
|
||||||
#ifdef PROGRAM_WITH_IL
|
#ifdef PROGRAM_WITH_IL
|
||||||
kernel_ = ocl_runtime_->GetKernelFromBinary(kernel_name);
|
kernel_ = ocl_runtime_->GetKernelFromBinary(kernel_name);
|
||||||
|
|
|
@ -38,11 +38,24 @@ int ReshapeOpenCLKernel::Init() {
|
||||||
MS_LOG(ERROR) << "Reshape output size should in 2,4";
|
MS_LOG(ERROR) << "Reshape output size should in 2,4";
|
||||||
return RET_ERROR;
|
return RET_ERROR;
|
||||||
}
|
}
|
||||||
if (in_tensors_[0]->shape().back() != out_tensors_[0]->shape().back()) {
|
if ((in_tensors_[0]->shape().back() % 4 != 0 || out_tensors_[0]->shape().back() % 4 != 0) &&
|
||||||
MS_LOG(ERROR) << "Reshape input channel " << in_tensors_[0]->shape().back() << " should equal output channel"
|
in_tensors_[0]->shape().back() != out_tensors_[0]->shape().back()) {
|
||||||
<< out_tensors_[0]->shape().back();
|
MS_LOG(ERROR) << "Reshape input channel align 4 should equal output channel, cin:" << in_tensors_[0]->shape().back()
|
||||||
|
<< " cout:" << out_tensors_[0]->shape().back();
|
||||||
return RET_ERROR;
|
return RET_ERROR;
|
||||||
}
|
}
|
||||||
|
if (in_tensors_[0]->shape().size() == 2) {
|
||||||
|
inShape = {in_tensors_[0]->shape()[0], 1, 1, in_tensors_[0]->shape()[1]};
|
||||||
|
} else {
|
||||||
|
inShape = {in_tensors_[0]->shape()[0], in_tensors_[0]->shape()[1], in_tensors_[0]->shape()[2],
|
||||||
|
in_tensors_[0]->shape()[3]};
|
||||||
|
}
|
||||||
|
if (out_tensors_[0]->shape().size() == 2) {
|
||||||
|
outShape = {out_tensors_[0]->shape()[0], 1, 1, out_tensors_[0]->shape()[1]};
|
||||||
|
} else {
|
||||||
|
outShape = {out_tensors_[0]->shape()[0], out_tensors_[0]->shape()[1], out_tensors_[0]->shape()[2],
|
||||||
|
out_tensors_[0]->shape()[3]};
|
||||||
|
}
|
||||||
#ifdef PROGRAM_WITH_IL
|
#ifdef PROGRAM_WITH_IL
|
||||||
kernel_ = ocl_runtime_->GetKernelFromBinary(kernel_name);
|
kernel_ = ocl_runtime_->GetKernelFromBinary(kernel_name);
|
||||||
#else
|
#else
|
||||||
|
@ -64,18 +77,10 @@ int ReshapeOpenCLKernel::ReSize() { return RET_OK; }
|
||||||
|
|
||||||
int ReshapeOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size) {
|
int ReshapeOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size) {
|
||||||
size_t im_dst_x, im_dst_y;
|
size_t im_dst_x, im_dst_y;
|
||||||
std::vector<int> shapex = out_tensors_[0]->shape();
|
int n = outShape[0];
|
||||||
int n, h, w, c;
|
int h = outShape[1];
|
||||||
if (shapex.size() == 2) {
|
int w = outShape[2];
|
||||||
n = shapex[0];
|
int c = outShape[3];
|
||||||
h = w = 1;
|
|
||||||
c = shapex[1];
|
|
||||||
} else {
|
|
||||||
n = shapex[0];
|
|
||||||
h = shapex[1];
|
|
||||||
w = shapex[2];
|
|
||||||
c = shapex[3];
|
|
||||||
}
|
|
||||||
if (op_format_ == schema::Format::Format_NHWC4) {
|
if (op_format_ == schema::Format::Format_NHWC4) {
|
||||||
im_dst_x = w * UP_DIV(c, C4NUM);
|
im_dst_x = w * UP_DIV(c, C4NUM);
|
||||||
im_dst_y = n * h;
|
im_dst_y = n * h;
|
||||||
|
@ -98,22 +103,12 @@ int ReshapeOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size)
|
||||||
|
|
||||||
int ReshapeOpenCLKernel::Run() {
|
int ReshapeOpenCLKernel::Run() {
|
||||||
MS_LOG(DEBUG) << this->name() << " Running!";
|
MS_LOG(DEBUG) << this->name() << " Running!";
|
||||||
std::vector<int> shapex = in_tensors_[0]->shape();
|
|
||||||
int h = shapex[1];
|
|
||||||
int w = shapex[2];
|
|
||||||
int c = shapex[3];
|
|
||||||
int c4 = UP_DIV(c, C4NUM);
|
|
||||||
int oh, ow;
|
|
||||||
if (out_tensors_[0]->shape().size() == 2) {
|
|
||||||
oh = ow = 1;
|
|
||||||
} else {
|
|
||||||
oh = out_tensors_[0]->shape()[1];
|
|
||||||
ow = out_tensors_[0]->shape()[2];
|
|
||||||
}
|
|
||||||
std::vector<size_t> local = {};
|
std::vector<size_t> local = {};
|
||||||
std::vector<size_t> global = {(size_t)oh, (size_t)ow, (size_t)c4};
|
std::vector<size_t> global = {
|
||||||
cl_int4 size = {h, w, c4, 1};
|
static_cast<size_t>(outShape[0] * outShape[1] * outShape[2] * UP_DIV(outShape[3], C4NUM))};
|
||||||
cl_int4 size_out = {oh, ow, c4, 1};
|
cl_int4 size = {inShape[0], inShape[1], inShape[2], UP_DIV(inShape[3], C4NUM)};
|
||||||
|
cl_int4 size_out = {outShape[0], outShape[1], outShape[2], UP_DIV(outShape[3], C4NUM)};
|
||||||
int arg_idx = 0;
|
int arg_idx = 0;
|
||||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->data_c());
|
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->data_c());
|
||||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->data_c());
|
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->data_c());
|
||||||
|
|
|
@ -38,6 +38,8 @@ class ReshapeOpenCLKernel : public OpenCLKernel {
|
||||||
private:
|
private:
|
||||||
cl::Kernel kernel_;
|
cl::Kernel kernel_;
|
||||||
bool enable_fp16_{false};
|
bool enable_fp16_{false};
|
||||||
|
std::vector<int> inShape;
|
||||||
|
std::vector<int> outShape;
|
||||||
};
|
};
|
||||||
} // namespace mindspore::kernel
|
} // namespace mindspore::kernel
|
||||||
|
|
||||||
|
|
|
@ -31,7 +31,6 @@ ml_hardware_liveness
|
||||||
ml_liveness_detect_landmark
|
ml_liveness_detect_landmark
|
||||||
ml_face_contour
|
ml_face_contour
|
||||||
2012_ATLANTA_1class_20190621_v4.x_nomean
|
2012_ATLANTA_1class_20190621_v4.x_nomean
|
||||||
ml_handpose
|
|
||||||
ml_ocr_sfz_add_final_0325
|
ml_ocr_sfz_add_final_0325
|
||||||
ml_hardware_pose
|
ml_hardware_pose
|
||||||
ml_bank_recog
|
ml_bank_recog
|
||||||
|
|
|
@ -0,0 +1,196 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#include <iostream>
|
||||||
|
#include <memory>
|
||||||
|
#include "src/common/log_adapter.h"
|
||||||
|
#include "common/common_test.h"
|
||||||
|
#include "mindspore/lite/src/common/file_utils.h"
|
||||||
|
#include "mindspore/lite/src/runtime/opencl/opencl_runtime.h"
|
||||||
|
#include "mindspore/lite/src/runtime/kernel/opencl/subgraph_opencl_kernel.h"
|
||||||
|
#include "mindspore/lite/src/runtime/kernel/opencl/kernel/fullconnection.h"
|
||||||
|
#include "mindspore/lite/test/ut/src/runtime/kernel/opencl/utils_tests.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
class TestFullConnectionOpenCL : public mindspore::CommonTest {
|
||||||
|
public:
|
||||||
|
TestFullConnectionOpenCL() {}
|
||||||
|
};
|
||||||
|
|
||||||
|
void RunTestCaseFullConnection(const std::vector<int> &shape, void *input_data, void *weight_data, void *bias_data,
|
||||||
|
void *output_data, bool enable_fp16, int dims) {
|
||||||
|
auto ocl_runtime = lite::opencl::OpenCLRuntimeWrapper().GetInstance();
|
||||||
|
ocl_runtime->Init();
|
||||||
|
size_t dtype_size = enable_fp16 ? sizeof(float16_t) : sizeof(float);
|
||||||
|
ocl_runtime->SetFp16Enable(enable_fp16);
|
||||||
|
auto allocator = ocl_runtime->GetAllocator();
|
||||||
|
std::vector<int> input_shape, output_shape, weight_shape, bias_shape;
|
||||||
|
if (dims == 2) {
|
||||||
|
int ci = shape[0];
|
||||||
|
int co = shape[1];
|
||||||
|
input_shape = {1, ci};
|
||||||
|
output_shape = {1, co};
|
||||||
|
weight_shape = {co, ci};
|
||||||
|
bias_shape = {co};
|
||||||
|
} else if (dims == 4) {
|
||||||
|
int n = shape[0];
|
||||||
|
int h = shape[1];
|
||||||
|
int w = shape[2];
|
||||||
|
int ci = shape[3];
|
||||||
|
int co = shape[4];
|
||||||
|
input_shape = {n, h, w, ci};
|
||||||
|
output_shape = {n, co};
|
||||||
|
weight_shape = {co, h * w * ci};
|
||||||
|
bias_shape = {co};
|
||||||
|
}
|
||||||
|
auto param = static_cast<MatMulParameter *>(malloc(sizeof(MatMulParameter)));
|
||||||
|
if (param == nullptr) {
|
||||||
|
MS_LOG(ERROR) << "param_ptr create error.";
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
param->a_transpose_ = false;
|
||||||
|
param->b_transpose_ = true;
|
||||||
|
param->has_bias_ = true;
|
||||||
|
auto tensor_x_ptr = std::make_unique<lite::Tensor>(TypeId(enable_fp16 ? kNumberTypeFloat16 : kNumberTypeFloat32),
|
||||||
|
input_shape, dims == 2 ? schema::Format_NC : schema::Format_NHWC);
|
||||||
|
auto tensor_x = tensor_x_ptr.get();
|
||||||
|
if (tensor_x == nullptr) {
|
||||||
|
MS_LOG(ERROR) << "tensor_x create error.";
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto tensor_w_ptr = std::make_unique<lite::Tensor>(TypeId(enable_fp16 ? kNumberTypeFloat16 : kNumberTypeFloat32),
|
||||||
|
weight_shape, schema::Format_NC);
|
||||||
|
auto tensor_w = tensor_w_ptr.get();
|
||||||
|
if (tensor_w == nullptr) {
|
||||||
|
MS_LOG(ERROR) << "tensor_w create error.";
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
tensor_w->SetData(weight_data);
|
||||||
|
|
||||||
|
auto tensor_bias_ptr = std::make_unique<lite::Tensor>(TypeId(enable_fp16 ? kNumberTypeFloat16 : kNumberTypeFloat32),
|
||||||
|
bias_shape, schema::Format_NC);
|
||||||
|
auto tensor_bias = tensor_bias_ptr.get();
|
||||||
|
if (tensor_bias == nullptr) {
|
||||||
|
MS_LOG(ERROR) << "tensor_w create error.";
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
tensor_bias->SetData(bias_data);
|
||||||
|
|
||||||
|
auto tensor_out_ptr = std::make_unique<lite::Tensor>(TypeId(enable_fp16 ? kNumberTypeFloat16 : kNumberTypeFloat32),
|
||||||
|
output_shape, schema::Format_NC);
|
||||||
|
auto tensor_out = tensor_out_ptr.get();
|
||||||
|
if (tensor_out == nullptr) {
|
||||||
|
MS_LOG(ERROR) << "tensor_out create error.";
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
std::vector<lite::Tensor *> inputs{tensor_x, tensor_w, tensor_bias};
|
||||||
|
std::vector<lite::Tensor *> outputs{tensor_out};
|
||||||
|
auto op_kernel_ptr =
|
||||||
|
std::make_unique<kernel::FullConnectionOpenCLKernel>(reinterpret_cast<OpParameter *>(param), inputs, outputs);
|
||||||
|
auto op_kernel = op_kernel_ptr.release();
|
||||||
|
if (op_kernel == nullptr) {
|
||||||
|
MS_LOG(ERROR) << "op_kernel create error.";
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
op_kernel->Init();
|
||||||
|
inputs[0]->MallocData(allocator);
|
||||||
|
|
||||||
|
std::vector<kernel::LiteKernel *> kernels{op_kernel};
|
||||||
|
|
||||||
|
std::vector<lite::Tensor *> inputs_g{tensor_x};
|
||||||
|
auto pGraph_ptr = std::make_unique<kernel::SubGraphOpenCLKernel>(inputs_g, outputs, kernels, kernels, kernels);
|
||||||
|
auto pGraph = pGraph_ptr.get();
|
||||||
|
if (pGraph == nullptr) {
|
||||||
|
MS_LOG(ERROR) << "pGraph create error.";
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
pGraph->Init();
|
||||||
|
memcpy(inputs[0]->MutableData(), input_data, tensor_x->ElementsNum() * dtype_size);
|
||||||
|
pGraph->Run();
|
||||||
|
if (enable_fp16) {
|
||||||
|
CompareOutput(outputs[0]->MutableData(), output_data, tensor_out->ElementsNum(), static_cast<float16_t>(1e-3),
|
||||||
|
2e-2);
|
||||||
|
} else {
|
||||||
|
CompareOutput(outputs[0]->MutableData(), output_data, tensor_out->ElementsNum(), static_cast<float>(1e-5));
|
||||||
|
}
|
||||||
|
|
||||||
|
for (auto t : inputs) {
|
||||||
|
t->SetData(nullptr);
|
||||||
|
}
|
||||||
|
for (auto t : outputs) {
|
||||||
|
t->SetData(nullptr);
|
||||||
|
}
|
||||||
|
MS_LOG(INFO) << "TestFullConnection passed";
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(TestFullConnectionOpenCL, FullConnection2DFp32) {
|
||||||
|
int ci = 5;
|
||||||
|
int co = 3;
|
||||||
|
std::vector<int> shape = {ci, co};
|
||||||
|
std::vector<float> input_data = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f};
|
||||||
|
std::vector<float> weight_data = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
|
||||||
|
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f};
|
||||||
|
std::vector<float> bias_data = {1.0f, 1.0f, 1.0f};
|
||||||
|
std::vector<float> output_data = {11.f, 11.f, 11.f};
|
||||||
|
RunTestCaseFullConnection(shape, input_data.data(), weight_data.data(), bias_data.data(), output_data.data(), false,
|
||||||
|
2);
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(TestFullConnectionOpenCL, FullConnection2DFp16) {
|
||||||
|
int ci = 5;
|
||||||
|
int co = 3;
|
||||||
|
std::vector<int> shape = {ci, co};
|
||||||
|
std::vector<float16_t> input_data = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f};
|
||||||
|
std::vector<float16_t> weight_data = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
|
||||||
|
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f};
|
||||||
|
std::vector<float16_t> bias_data = {1.0f, 1.0f, 1.0f};
|
||||||
|
std::vector<float16_t> output_data = {11.f, 11.f, 11.f};
|
||||||
|
RunTestCaseFullConnection(shape, input_data.data(), weight_data.data(), bias_data.data(), output_data.data(), true,
|
||||||
|
2);
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(TestFullConnectionOpenCL, FullConnection4DFp32) {
|
||||||
|
int n = 1;
|
||||||
|
int h = 2;
|
||||||
|
int w = 1;
|
||||||
|
int c = 4;
|
||||||
|
int co = 2;
|
||||||
|
std::vector<int> shape = {n, h, w, c, co};
|
||||||
|
std::vector<float> input_data = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f};
|
||||||
|
std::vector<float> weight_data = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
|
||||||
|
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f};
|
||||||
|
std::vector<float> bias_data = {1.0f, 1.0f};
|
||||||
|
std::vector<float> output_data = {29.f, 29.f};
|
||||||
|
RunTestCaseFullConnection(shape, input_data.data(), weight_data.data(), bias_data.data(), output_data.data(), false,
|
||||||
|
4);
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(TestFullConnectionOpenCL, FullConnection4DFp16) {
|
||||||
|
int n = 1;
|
||||||
|
int h = 2;
|
||||||
|
int w = 1;
|
||||||
|
int c = 4;
|
||||||
|
int co = 2;
|
||||||
|
std::vector<int> shape = {n, h, w, c, co};
|
||||||
|
std::vector<float16_t> input_data = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f};
|
||||||
|
std::vector<float16_t> weight_data = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
|
||||||
|
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f};
|
||||||
|
std::vector<float16_t> bias_data = {1.0f, 1.0f};
|
||||||
|
std::vector<float16_t> output_data = {29.f, 29.f};
|
||||||
|
RunTestCaseFullConnection(shape, input_data.data(), weight_data.data(), bias_data.data(), output_data.data(), true,
|
||||||
|
4);
|
||||||
|
}
|
||||||
|
} // namespace mindspore
|
|
@ -88,7 +88,7 @@ void RunTestCaseMatMul(const std::vector<int> &shape, void *input_data, void *we
|
||||||
std::vector<lite::Tensor *> inputs{tensor_x, tensor_w};
|
std::vector<lite::Tensor *> inputs{tensor_x, tensor_w};
|
||||||
std::vector<lite::Tensor *> outputs{tensor_out};
|
std::vector<lite::Tensor *> outputs{tensor_out};
|
||||||
auto op_kernel_ptr =
|
auto op_kernel_ptr =
|
||||||
std::make_unique<kernel::MatMulOpenCLKernel>(reinterpret_cast<OpParameter *>(param), inputs, outputs, false);
|
std::make_unique<kernel::MatMulOpenCLKernel>(reinterpret_cast<OpParameter *>(param), inputs, outputs);
|
||||||
auto op_kernel = op_kernel_ptr.release();
|
auto op_kernel = op_kernel_ptr.release();
|
||||||
if (op_kernel == nullptr) {
|
if (op_kernel == nullptr) {
|
||||||
MS_LOG(ERROR) << "op_kernel create error.";
|
MS_LOG(ERROR) << "op_kernel create error.";
|
||||||
|
|
|
@ -52,7 +52,7 @@ void RunTestCaseReshape(const std::vector<int> &shape, void *input_data, void *o
|
||||||
}
|
}
|
||||||
std::vector<int> out_shape = {n, oh, ow, c};
|
std::vector<int> out_shape = {n, oh, ow, c};
|
||||||
if (is_output_2d) {
|
if (is_output_2d) {
|
||||||
out_shape = {n, c};
|
out_shape = {n, h * w * c};
|
||||||
}
|
}
|
||||||
auto tensor_out_ptr =
|
auto tensor_out_ptr =
|
||||||
std::make_unique<lite::Tensor>(TypeId(enable_fp16 ? kNumberTypeFloat16 : kNumberTypeFloat32), out_shape,
|
std::make_unique<lite::Tensor>(TypeId(enable_fp16 ? kNumberTypeFloat16 : kNumberTypeFloat32), out_shape,
|
||||||
|
@ -156,4 +156,20 @@ TEST_F(TestReshapeOpenCL, Reshape4DFp16) {
|
||||||
|
|
||||||
RunTestCaseReshape(shape, input_data.data(), output_data.data(), true, false);
|
RunTestCaseReshape(shape, input_data.data(), output_data.data(), true, false);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST_F(TestReshapeOpenCL, Reshape4D2DFp32) {
|
||||||
|
int n = 1;
|
||||||
|
int h = 2;
|
||||||
|
int w = 2;
|
||||||
|
int c = 4;
|
||||||
|
int oh = 2;
|
||||||
|
int ow = 2;
|
||||||
|
std::vector<int> shape = {n, h, w, c, oh, ow};
|
||||||
|
std::vector<float> input_data = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f,
|
||||||
|
8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f};
|
||||||
|
std::vector<float> output_data = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f,
|
||||||
|
8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f};
|
||||||
|
|
||||||
|
RunTestCaseReshape(shape, input_data.data(), output_data.data(), false, true);
|
||||||
|
}
|
||||||
} // namespace mindspore
|
} // namespace mindspore
|
||||||
|
|
Loading…
Reference in New Issue