forked from mindspore-Ecosystem/mindspore
新增通信算子稀疏用例
This commit is contained in:
parent
a84a5215ca
commit
02d0c03994
|
@ -0,0 +1,22 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
LOCAL_HIAI=/usr/local/HiAI
|
||||
export TBE_IMPL_PATH=${LOCAL_HIAI}/runtime/ops/op_impl/built-in/ai_core/tbe/impl/
|
||||
export LD_LIBRARY_PATH=${LOCAL_HIAI}/runtime/lib64/:${LD_LIBRARY_PATH}
|
||||
export PATH=${LOCAL_HIAI}/runtime/ccec_compiler/bin/:${PATH}
|
||||
export PYTHONPATH=${LOCAL_HIAI}/runtime/ops/op_impl/built-in/ai_core/tbe/:${PYTHONPATH}
|
||||
export DEVICE_MEMORY_CAPACITY=1073741824000
|
||||
export NOT_FULLY_USE_DEVICES=off
|
|
@ -0,0 +1,173 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import os
|
||||
import numpy as np
|
||||
from mindspore.communication.management import get_rank
|
||||
from mindspore import Tensor
|
||||
from mindspore import Parameter
|
||||
from mindspore import context
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
from mindspore.train import Model
|
||||
from mindspore.context import ParallelMode
|
||||
from mindspore.communication.management import init
|
||||
from mindspore.communication.management import get_group_size
|
||||
|
||||
|
||||
class FakeDataInitMode:
|
||||
RandomInit = 0
|
||||
OnesInit = 1
|
||||
UniqueInit = 2
|
||||
ZerosInit = 3
|
||||
|
||||
class FakeData:
|
||||
def __init__(self, size=1024, batch_size=32, image_size=(3, 224, 224), num_class=10,
|
||||
random_offset=0, use_parallel=False, fakedata_mode=FakeDataInitMode.RandomInit):
|
||||
|
||||
self.size = size
|
||||
self.rank_batch_size = batch_size
|
||||
self.total_batch_size = self.rank_batch_size
|
||||
self.random_offset = random_offset
|
||||
self.image_size = image_size
|
||||
self.num_class = num_class
|
||||
self.rank_size = 1
|
||||
self.rank_id = 0
|
||||
self.batch_index = 0
|
||||
self.image_data_type = np.float32
|
||||
self.label_data_type = np.float32
|
||||
self.is_onehot = True
|
||||
self.fakedata_mode = fakedata_mode
|
||||
|
||||
if use_parallel:
|
||||
if 'CONTEXT_DEVICE_TARGET' in os.environ and os.environ['CONTEXT_DEVICE_TARGET'] == 'GPU':
|
||||
init(backend_name='nccl')
|
||||
else:
|
||||
init(backend_name='hccl')
|
||||
self.rank_size = get_group_size()
|
||||
self.rank_id = get_rank()
|
||||
self.total_batch_size = self.rank_batch_size * self.rank_size
|
||||
assert self.size % self.total_batch_size == 0
|
||||
self.total_batch_data_size = (self.rank_size, self.rank_batch_size) + image_size
|
||||
|
||||
def get_dataset_size(self):
|
||||
return int(self.size / self.total_batch_size)
|
||||
|
||||
def get_reeat_count(self):
|
||||
return 1
|
||||
|
||||
def set_image_data_type(self, data_type):
|
||||
self.image_data_type = data_type
|
||||
|
||||
def set_label_data_type(self, data_type):
|
||||
self.label_data_type = data_type
|
||||
|
||||
def set_label_onehot(self, is_onehot=True):
|
||||
self.is_onehot = is_onehot
|
||||
|
||||
def create_tuple_iterator(self, num_epochs=-1, do_copy=False):
|
||||
return self
|
||||
|
||||
def __getitem__(self, batch_index):
|
||||
if batch_index * self.total_batch_size >= len(self):
|
||||
raise IndexError("{} index out of range".format(self.__class__.__name__))
|
||||
rng_state = np.random.get_state()
|
||||
np.random.seed(batch_index + self.random_offset)
|
||||
if self.fakedata_mode == FakeDataInitMode.OnesInit:
|
||||
img = np.ones(self.total_batch_data_size)
|
||||
elif self.fakedata_mode == FakeDataInitMode.ZerosInit:
|
||||
img = np.zeros(self.total_batch_data_size)
|
||||
elif self.fakedata_mode == FakeDataInitMode.UniqueInit:
|
||||
total_size = 1
|
||||
for i in self.total_batch_data_size:
|
||||
total_size = total_size* i
|
||||
img = np.reshape(np.arange(total_size)*0.0001, self.total_batch_data_size)
|
||||
else:
|
||||
img = np.random.randn(*self.total_batch_data_size)
|
||||
target = np.random.randint(0, self.num_class, size=(self.rank_size, self.rank_batch_size))
|
||||
np.random.set_state(rng_state)
|
||||
img = img[self.rank_id]
|
||||
target = target[self.rank_id]
|
||||
img_ret = img.astype(self.image_data_type)
|
||||
target_ret = target.astype(self.label_data_type)
|
||||
if self.is_onehot:
|
||||
target_onehot = np.zeros(shape=(self.rank_batch_size, self.num_class))
|
||||
target_onehot[np.arange(self.rank_batch_size), target] = 1
|
||||
target_ret = target_onehot.astype(self.label_data_type)
|
||||
return Tensor(img_ret), Tensor(target_ret)
|
||||
|
||||
def __len__(self):
|
||||
return self.size
|
||||
|
||||
def __iter__(self):
|
||||
self.batch_index = 0
|
||||
return self
|
||||
|
||||
def reset(self):
|
||||
self.batch_index = 0
|
||||
|
||||
def __next__(self):
|
||||
if self.batch_index * self.total_batch_size < len(self):
|
||||
data = self[self.batch_index]
|
||||
self.batch_index += 1
|
||||
return data
|
||||
raise StopIteration
|
||||
|
||||
|
||||
class NetWithSparseGatherV2(nn.Cell):
|
||||
def __init__(self, strategy=None, sparse=True):
|
||||
super(NetWithSparseGatherV2, self).__init__()
|
||||
self.axis = 0
|
||||
self.sparse = sparse
|
||||
if sparse:
|
||||
self.weight = Parameter(Tensor(np.ones([8, 8]).astype(np.float32)), name="weight")
|
||||
self.gather = P.SparseGatherV2()
|
||||
else:
|
||||
self.weight = Parameter(Tensor(np.ones([8, 8]).astype(np.float32)), name="weight")
|
||||
self.gather = P.GatherV2()
|
||||
if strategy is not None:
|
||||
self.gather.shard(strategy)
|
||||
|
||||
def construct(self, indices):
|
||||
x = self.gather(self.weight, indices, self.axis)
|
||||
return x
|
||||
|
||||
def train_mindspore_impl(self, indices, epoch, batch_size, use_parallel=True):
|
||||
ds = FakeData(size=8, batch_size=batch_size, num_class=8, image_size=(), use_parallel=use_parallel)
|
||||
ds.set_image_data_type(np.int32)
|
||||
net = self
|
||||
net.set_train()
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
optimizer = nn.Adam(net.trainable_params())
|
||||
optimizer.target = "CPU"
|
||||
model = Model(net, loss, optimizer)
|
||||
for _ in range(epoch):
|
||||
model.train(1, ds, dataset_sink_mode=False)
|
||||
output = net(indices)
|
||||
return output
|
||||
|
||||
|
||||
def test_allreduce_sparsegatherv2_adam_auto_parallel():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='Ascend')
|
||||
init(backend_name='hccl')
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, device_num=8, gradients_mean=True)
|
||||
indices = Tensor(np.array([0, 1, 2, 3, 4, 5, 6, 7]).astype(np.int32))
|
||||
epoch = 3
|
||||
batch_size = 1
|
||||
context.set_context(enable_sparse=True)
|
||||
net = NetWithSparseGatherV2(sparse=True)
|
||||
output_sparse = net.train_mindspore_impl(indices, epoch, batch_size)
|
||||
net = NetWithSparseGatherV2(sparse=False)
|
||||
output = net.train_mindspore_impl(indices, epoch, batch_size)
|
||||
assert np.allclose(output.asnumpy(), output_sparse.asnumpy(), 0.001, 0.001)
|
|
@ -0,0 +1,53 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
set -e
|
||||
BASE_PATH=$(
|
||||
cd "$(dirname $0)"
|
||||
pwd
|
||||
)
|
||||
CONFIG_PATH=/home/workspace/mindspore_config
|
||||
export DEVICE_NUM=8
|
||||
export RANK_SIZE=$DEVICE_NUM
|
||||
source ${BASE_PATH}/env_hcom.sh
|
||||
unset SLOG_PRINT_TO_STDOUT
|
||||
export MINDSPORE_HCCL_CONFIG_PATH=$CONFIG_PATH/hccl/rank_table_${DEVICE_NUM}p.json
|
||||
|
||||
process_pid=()
|
||||
for ((i = 0; i < $DEVICE_NUM; i++)); do
|
||||
rm -rf ${BASE_PATH}/hcom_sparsetensor${i}
|
||||
mkdir ${BASE_PATH}/hcom_sparsetensor${i}
|
||||
cp -r ${BASE_PATH}/hcom_sparsetensor.py ${BASE_PATH}/hcom_sparsetensor${i}/
|
||||
cd ${BASE_PATH}/hcom_sparsetensor${i}
|
||||
export RANK_ID=${i}
|
||||
export DEVICE_ID=${i}
|
||||
echo "start training for device $i"
|
||||
env >env$i.log
|
||||
pytest -s -v hcom_sparsetensor.py >test_hcom_sparsetensor_8p_log$i.log 2>&1 &
|
||||
process_pid[${i}]=$(echo $!)
|
||||
done
|
||||
|
||||
for ((i = 0; i < ${DEVICE_NUM}; i++)); do
|
||||
wait ${process_pid[i]}
|
||||
status=$(echo $?)
|
||||
if [ "${status}" != "0" ]; then
|
||||
echo "[ERROR] test_hcom_sparsetensor failed. status: ${status}"
|
||||
exit 1
|
||||
else
|
||||
echo "[INFO] test_hcom_sparsetensor success."
|
||||
fi
|
||||
done
|
||||
|
||||
exit 0
|
|
@ -0,0 +1,27 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import os
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_single
|
||||
def test_allreduce_sparsegatherv2_adam_auto_parallel():
|
||||
sh_path = os.path.split(os.path.realpath(__file__))[0]
|
||||
ret = os.system(f"sh {sh_path}/run_hcom_sparsetensor.sh")
|
||||
assert ret == 0
|
Loading…
Reference in New Issue