split UMonad in inputs of op

This commit is contained in:
wenfangpei 2021-04-01 14:47:59 +08:00
parent d346a861bc
commit 0085a273e7
7 changed files with 127 additions and 58 deletions

View File

@ -26,6 +26,7 @@
#include "backend/kernel_compiler/common_utils.h"
#include "backend/kernel_compiler/kernel_build_info.h"
#include "backend/optimizer/graph_kernel/graph_kernel_helper.h"
#include "backend/optimizer/graph_kernel/split_umonad.h"
#include "backend/optimizer/graph_kernel/substitute_dropout.h"
#include "backend/session/anf_runtime_algorithm.h"
#include "mindspore/core/ir/graph_utils.h"
@ -37,10 +38,14 @@
namespace mindspore {
namespace opt {
namespace {
constexpr size_t kAssignInputIdx = 1;
constexpr size_t kLambInputIdx = 12;
std::vector<PrimitivePtr> GetExpandOps() {
std::vector<PrimitivePtr> expand_ops = {
prim::kPrimSquare,
prim::kPrimGeLUGrad,
prim::kPrimAssignAdd,
#if ENABLE_D
prim::kPrimTile,
prim::kPrimSqrtGrad,
@ -69,7 +74,6 @@ std::vector<PrimitivePtr> GetExpandOps() {
prim::kPrimSigmoidCrossEntropyWithLogits,
prim::kPrimSigmoidCrossEntropyWithLogitsGrad,
prim::kPrimSoftmaxCrossEntropyWithLogits,
prim::kPrimAssignAdd,
#endif
};
const auto &flags = context::GraphKernelFlags::GetInstance();
@ -167,6 +171,22 @@ AnfNodePtr DefaultExpander::Run(const AnfNodePtr &node) {
return graph_kernel_node;
}
ExpanderPtr GraphKernelExpander::GetExpander(const AnfNodePtr &node) {
std::vector<std::pair<PrimitivePtr, ExpanderPtr>> expanders = {
{prim::kPrimDropout, std::make_shared<DropoutExpander>()},
{prim::kPrimAssignAdd, std::make_shared<OpUMonadExpander>(kAssignInputIdx)},
{prim::kPrimAssignSub, std::make_shared<OpUMonadExpander>(kAssignInputIdx)},
{prim::kLambApplyOptimizerAssign, std::make_shared<OpUMonadExpander>(kLambInputIdx)},
};
for (auto &e : expanders) {
if (IsPrimitiveCNode(node, e.first)) {
return e.second;
}
}
return std::make_shared<DefaultExpander>();
}
bool GraphKernelExpander::DoExpand(const FuncGraphPtr &func_graph) {
bool changed = false;
auto todos = TopoSort(func_graph->get_return());
@ -192,18 +212,6 @@ bool GraphKernelExpander::DoExpand(const FuncGraphPtr &func_graph) {
return changed;
}
ExpanderPtr GraphKernelExpander::GetExpander(const AnfNodePtr &node) {
std::vector<std::pair<PrimitivePtr, ExpanderPtr>> expanders = {
{prim::kPrimDropout, std::make_shared<DropoutExpander>()},
};
for (auto &e : expanders) {
if (IsPrimitiveCNode(node, e.first)) {
return e.second;
}
}
return std::make_shared<DefaultExpander>();
}
bool GraphKernelExpander::Run(const FuncGraphPtr &func_graph) {
expand_ops_ = GetExpandOps();
return DoExpand(func_graph);

View File

@ -37,7 +37,7 @@
#include "backend/optimizer/graph_kernel/value_graph_binder.h"
#include "backend/optimizer/graph_kernel/parallel_fusion.h"
#include "backend/optimizer/graph_kernel/optimize_assign.h"
#include "backend/optimizer/graph_kernel/split_assign.h"
#include "backend/optimizer/graph_kernel/split_umonad.h"
#include "backend/optimizer/graph_kernel/reorder_ops.h"
#include "backend/optimizer/graph_kernel/update_state_formatter.h"
#include "backend/optimizer/graph_kernel/axis_normalizer.h"

View File

@ -13,7 +13,7 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/optimizer/graph_kernel/split_assign.h"
#include "backend/optimizer/graph_kernel/split_umonad.h"
#include <vector>
#include <string>
@ -35,31 +35,63 @@ const BaseRef SplitAssign::DefinePattern() const {
return VectorRef({v, Xs, Us, UMonad});
}
bool CanSplit(const AnfNodePtr &node) {
return IsPrimitiveCNode(node, prim::kPrimAssignAdd) || IsPrimitiveCNode(node, prim::kPrimAssign) ||
IsPrimitiveCNode(node, prim::kPrimAssignSub);
bool CanSplit(const AnfNodePtr &node) { return IsPrimitiveCNode(node, prim::kPrimAssign); }
AnfNodePtr ProcessNode(const FuncGraphPtr &func_graph, const AnfNodePtr &node, int input_idx) {
MS_EXCEPTION_IF_NULL(node);
CNodePtr cnode = node->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(cnode);
// Get original op's abstract and inputs
AbstractBasePtr original_abstract = cnode->abstract()->Clone();
auto original_inputs = cnode->inputs();
int input_node_size = cnode->size() - 1;
// Create depend node
AnfNodePtrList depend_inputs = {NewValueNode(prim::kPrimDepend), original_inputs[input_idx],
original_inputs[input_node_size]};
auto depend_cnode = func_graph->NewCNode(depend_inputs);
depend_cnode->set_abstract(original_inputs[input_idx]->abstract());
depend_cnode->set_kernel_info(std::make_shared<device::KernelInfo>());
// Create new node, delete U from inputs.
AnfNodePtrList new_inputs = {cnode->input(0)};
for (int i = 1; i < input_node_size; i++) {
if (i == input_idx) {
new_inputs.push_back(depend_cnode);
} else {
new_inputs.push_back(cnode->input(i));
}
}
auto new_cnode = func_graph->NewCNode(new_inputs);
new_cnode->set_abstract(original_abstract);
new_cnode->set_kernel_info(cnode->kernel_info_ptr());
return new_cnode;
}
const AnfNodePtr SplitAssign::Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node, const EquivPtr &) const {
MS_EXCEPTION_IF_NULL(node);
if (!CanSplit(node)) return node;
CNodePtr cnode = node->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(cnode);
CheckCNodeInputSize(cnode, kAssignInputTensorNum);
// Get original assign op's abstract and inputs
AbstractBasePtr original_abstract = cnode->abstract()->Clone();
auto original_inputs = cnode->inputs();
// Create depend node
AnfNodePtrList depend_inputs = {NewValueNode(prim::kPrimDepend), original_inputs[1], original_inputs[3]};
auto depend_cnode = func_graph->NewCNode(depend_inputs);
depend_cnode->set_abstract(original_inputs[1]->abstract());
depend_cnode->set_kernel_info(std::make_shared<device::KernelInfo>());
// Create new assign node, delete U from inputs.
AnfNodePtrList new_assign_inputs = {cnode->input(0), depend_cnode, original_inputs[2]};
auto new_assign_cnode = func_graph->NewCNode(new_assign_inputs);
new_assign_cnode->set_abstract(original_abstract);
new_assign_cnode->set_kernel_info(cnode->kernel_info_ptr());
return new_assign_cnode;
return ProcessNode(node->func_graph(), node, 1);
}
AnfNodePtr OpUMonadExpander::Run(const AnfNodePtr &node) {
auto cnode = node->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(cnode);
bool has_umonad = false;
for (unsigned int i = 1; i < cnode->size(); i++) {
if (HasAbstractUMonad(cnode->input(i))) {
has_umonad = true;
break;
}
}
if (has_umonad) {
auto new_node = ProcessNode(node->func_graph(), node, input_idx_);
return DefaultExpander::Run(new_node);
}
return DefaultExpander::Run(node);
}
} // namespace opt
} // namespace mindspore

View File

@ -13,11 +13,11 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_SPLIT_ASSIGN_H_
#define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_SPLIT_ASSIGN_H_
#ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_SPLIT_UMONAD_H_
#define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_SPLIT_UMONAD_H_
#include "backend/optimizer/common/optimizer.h"
#include "backend/optimizer/graph_kernel/graph_kernel_expander.h"
namespace mindspore {
namespace opt {
class SplitAssign : public PatternProcessPass {
@ -27,6 +27,16 @@ class SplitAssign : public PatternProcessPass {
const BaseRef DefinePattern() const override;
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
};
class OpUMonadExpander : public DefaultExpander {
public:
explicit OpUMonadExpander(int input_idx) : input_idx_(input_idx) {}
~OpUMonadExpander() = default;
AnfNodePtr Run(const AnfNodePtr &node) override;
private:
int input_idx_;
};
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_SPLIT_ASSIGN_H_
#endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_SPLIT_UMONAD_H_

View File

@ -219,8 +219,10 @@ bool ExtendOutputForUpdateState::ProcessIndex(const FuncGraphPtr &func_graph, co
auto mng = func_graph->manager();
MS_EXCEPTION_IF_NULL(mng);
for (auto user : mng->node_users()[getitems_[index]]) {
if (IsPrimitiveCNode(user.first, prim::kPrimUpdateState)) {
user.first->cast<CNodePtr>()->set_input(user.second, new_node);
}
}
return true;
}

View File

@ -32,26 +32,38 @@ class AssignAdd(nn.Cell):
self.add(self.var, y)
return self.var
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_assign_add():
x2 = Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32))
y2 = Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32))
context.set_context(mode=context.GRAPH_MODE,
enable_graph_kernel=True, device_target="GPU")
def get_output(x2, y2, enable_graph_kernel=False):
context.set_context(enable_graph_kernel=enable_graph_kernel)
add = AssignAdd(x2)
result_gk_on_1 = add(y2)
add_2 = AssignAdd(result_gk_on_1)
result_gk_on_2 = add_2(y2)
output = [result_gk_on_1, result_gk_on_2]
return output
context.set_context(mode=context.GRAPH_MODE,
enable_graph_kernel=False, device_target="GPU")
add_beta = AssignAdd(x2)
result_gk_off_1 = add_beta(y2)
add_beta_2 = AssignAdd(result_gk_off_1)
result_gk_off_2 = add_beta_2(y2)
assert (result_gk_on_1.asnumpy() == result_gk_off_1.asnumpy()).all()
assert (result_gk_on_2.asnumpy() == result_gk_off_2.asnumpy()).all()
def assign_add():
x2 = Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32))
y2 = Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32))
expect = get_output(x2, y2, False)
output = get_output(x2, y2, True)
e1, e2 = list(expect)
o1, o2 = list(output)
assert np.allclose(o1.asnumpy(), e1.asnumpy())
assert np.allclose(o2.asnumpy(), e2.asnumpy())
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_assign_add_gpu():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
assign_add()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_assign_add_ascend():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
assign_add()

View File

@ -14,6 +14,7 @@
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
@ -67,6 +68,10 @@ def lamb_apply_optimizer_assign():
assert np.allclose(o2.asnumpy(), e2.asnumpy())
assert np.allclose(o3.asnumpy(), e3.asnumpy())
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_lamb_apply_optimizer_assign_ascend():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
lamb_apply_optimizer_assign()