forked from mindspore-Ecosystem/mindspore
modify code display way
This commit is contained in:
parent
6c9fd1bd63
commit
005dc05cf6
|
@ -6,6 +6,10 @@ ReWrite完整示例请参考
|
|||
`rewrite_example.py <https://gitee.com/mindspore/mindspore/tree/master/docs/api/api_python/rewrite_example.py>`_ 。
|
||||
该样例代码的主要功能包括:怎么通过网络创建SymbolTree,并且对SymbolTree中的节点进行插入删除替换等操作,其中还包含了对子网络的修改和通过模式匹配进行节点替换。
|
||||
|
||||
.. literalinclude:: rewrite_example.py
|
||||
:language: python
|
||||
:start-at: import
|
||||
|
||||
.. py:class:: mindspore.rewrite.SymbolTree(handler: SymbolTreeImpl)
|
||||
|
||||
SymbolTree通常对应于网络的前向计算过程。
|
||||
|
@ -483,7 +487,7 @@ ReWrite完整示例请参考
|
|||
- **RuntimeError** - 如果参数 `node` 不是 NodeType.Tree类型。
|
||||
- **TypeError** - 如果参数 `node` 不是Node类型实例。
|
||||
|
||||
.. py:method:: mindspore.rewrite.sparsify(f, arg_types, sparse_rules=None)
|
||||
.. py:function:: mindspore.rewrite.sparsify(f, arg_types, sparse_rules=None)
|
||||
|
||||
模型自动稀疏化接口,将稠密模型转换为稀疏模型。通过 `arg_types` 指定的参数类型,将稀疏参数在模型中传导,并调用相应的稀疏函数。
|
||||
|
||||
|
|
|
@ -47,7 +47,7 @@ mindspore.nn.thor
|
|||
- **decay_filter** (function) - 用于确定权重衰减应用于哪些层的函数,只有在weight_decay>0时才有效。默认值:lambda x: x.name not in []。
|
||||
- **split_indices** (list) - 按A/G层(A/G含义见上述公式)索引设置allreduce融合策略。仅在分布式计算中有效。ResNet50作为一个样本,A/G的层数分别为54层,当split_indices设置为[26,53]时,表示A/G被分成两组allreduce,一组为0~26层,另一组是27~53层。默认值:None。
|
||||
- **enable_clip_grad** (bool) - 是否剪切梯度。默认值:False。
|
||||
- **frequency** (int) - A/G和$A^{-1}/G^{-1}$的更新间隔。每隔frequency个step,A/G和$A^{-1}/G^{-1}$将更新一次。必须大于1。默认值:100。
|
||||
- **frequency** (int) - A/G和 :math:`A^{-1}/G^{-1}` 的更新间隔。当frequency等于N(N必须大于1),每隔frequency个step,A/G和 :math:`A^{-1}/G^{-1}` 将更新一次。其他step将使用之前的A/G和 :math:`A^{-1}/G^{-1}` 来更新权重。默认值:100。
|
||||
|
||||
输入:
|
||||
- **gradients** (tuple[Tensor]) - 训练参数的梯度,矩阵维度与训练参数相同。
|
||||
|
|
|
@ -5,5 +5,9 @@ For a complete ReWrite example, refer to
|
|||
`rewrite_example.py <https://gitee.com/mindspore/mindspore/tree/master/docs/api/api_python_en/rewrite_example.py>`_ 。
|
||||
The main functions of the sample code include: how to create a SymbolTree through the network, and how to insert, delete, and replace the nodes in the SymbolTree. It also includes the modification of the subnet and node replacement through pattern matching.
|
||||
|
||||
.. literalinclude:: rewrite_example.py
|
||||
:language: python
|
||||
:start-at: import
|
||||
|
||||
.. automodule:: mindspore.rewrite
|
||||
:members:
|
|
@ -340,7 +340,7 @@ class DATASET_API DataHelper {
|
|||
}
|
||||
|
||||
/// \brief Write pointer to bin, use pointer to avoid memcpy
|
||||
/// \note The value of `length`` must be equal to the length of `data`
|
||||
/// \note The value of `length` must be equal to the length of `data`
|
||||
/// \param[in] in_file File name to write to
|
||||
/// \param[in] data Pointer to data
|
||||
/// \param[in] length Length of values to write from pointer
|
||||
|
|
|
@ -24,7 +24,7 @@
|
|||
namespace mindspore {
|
||||
namespace ops {
|
||||
constexpr auto kNameExpandDims = "ExpandDims";
|
||||
/// \brief Adds an additional dimension to ‘input_x` at the given axis.
|
||||
/// \brief Adds an additional dimension to `input_x` at the given axis.
|
||||
/// Refer to Python API @ref mindspore.ops.ExpandDims for more details.
|
||||
class MIND_API ExpandDims : public BaseOperator {
|
||||
public:
|
||||
|
|
|
@ -314,9 +314,9 @@ def thor(net, learning_rate, damping, momentum, weight_decay=0.0, loss_scale=1.0
|
|||
|
||||
enable_clip_grad (bool): Whether to clip the gradients. Default: False
|
||||
|
||||
frequency(int): The update interval of A/G and $A^{-1}/G^{-1}$. When frequency equals N (N is greater than 1),
|
||||
A/G and $A^{-1}/G^{-1}$ will be updated every N steps, and other steps will use the stale A/G and
|
||||
$A^{-1}/G^{-1}$ to update weights. Default: 100.
|
||||
frequency(int): The update interval of A/G and :math:`A^{-1}/G^{-1}`. When frequency equals N
|
||||
(N is greater than 1), A/G and :math:`A^{-1}/G^{-1}` will be updated every N steps,
|
||||
and other steps will use the stale A/G and :math:`A^{-1}/G^{-1}` to update weights. Default: 100.
|
||||
|
||||
Inputs:
|
||||
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
|
||||
|
|
Loading…
Reference in New Issue