2020-07-15 11:35:34 +08:00
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
import mindspore.context as context
|
|
|
|
from mindspore import Tensor
|
|
|
|
import mindspore.nn as nn
|
2020-11-17 03:52:51 +08:00
|
|
|
from mindspore.ops.operations import _inner_ops as inner
|
2020-07-15 11:35:34 +08:00
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
|
|
|
|
|
|
class Net(nn.Cell):
|
|
|
|
def __init__(self, axis=0, out_nums=1):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.split = P.Split(axis, out_nums)
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
return self.split(x)
|
|
|
|
|
|
|
|
|
2020-11-17 03:52:51 +08:00
|
|
|
class NetDynamic(nn.Cell):
|
|
|
|
def __init__(self, axis=0, out_nums=1):
|
|
|
|
super(NetDynamic, self).__init__()
|
|
|
|
self.conv = inner.GpuConvertToDynamicShape()
|
|
|
|
self.split = P.Split(axis, out_nums)
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
x_conv = self.conv(x)
|
|
|
|
x_split = self.split(x_conv)
|
|
|
|
return x_split
|
|
|
|
|
|
|
|
|
2020-07-15 11:35:34 +08:00
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_split():
|
|
|
|
x = np.array([[[1, -1, 1], [2, -2, 2]],
|
|
|
|
[[3, -3, 3], [4, -4, 4]],
|
|
|
|
[[5, -5, 5], [6, -6, 6]]]).astype(np.float32)
|
|
|
|
|
|
|
|
split_op = Net(0, 3)
|
|
|
|
outputs = split_op(Tensor(x))
|
|
|
|
for i, out in enumerate(outputs):
|
|
|
|
assert (out.asnumpy() == x[i]).all()
|
|
|
|
|
|
|
|
|
2020-11-17 03:52:51 +08:00
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.env_onecard
|
2020-07-15 11:35:34 +08:00
|
|
|
def test_split_4d():
|
|
|
|
x_np = np.random.randn(2, 6, 4, 4).astype(np.float32)
|
|
|
|
y = np.split(x_np, 3, axis=1)
|
|
|
|
|
|
|
|
split_op = Net(1, 3)
|
|
|
|
outputs = split_op(Tensor(x_np))
|
|
|
|
|
|
|
|
for i, out in enumerate(outputs):
|
|
|
|
assert (out.asnumpy() == y[i]).all()
|
2020-11-17 03:52:51 +08:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_split_dynamic():
|
|
|
|
x = np.array([[[1, -1, 1], [2, -2, 2]],
|
|
|
|
[[3, -3, 3], [4, -4, 4]],
|
|
|
|
[[5, -5, 5], [6, -6, 6]]]).astype(np.float32)
|
|
|
|
|
|
|
|
net = NetDynamic(0, 3)
|
|
|
|
x_split = net(Tensor(x))
|
|
|
|
for i, out in enumerate(x_split):
|
|
|
|
assert (out.asnumpy() == x[i]).all()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_split_dynamic_axis1():
|
|
|
|
x = np.array([[[1, -1, 1], [2, -2, 2]],
|
|
|
|
[[3, -3, 3], [4, -4, 4]],
|
|
|
|
[[5, -5, 5], [6, -6, 6]]]).astype(np.int32)
|
|
|
|
y = np.split(x, 2, axis=1)
|
|
|
|
|
|
|
|
net = NetDynamic(1, 2)
|
|
|
|
x_split = net(Tensor(x))
|
|
|
|
for i, out in enumerate(x_split):
|
|
|
|
assert (out.asnumpy() == y[i]).all()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_split_dynamic_axis2():
|
|
|
|
x = np.array([[[1, -1, 1], [2, -2, 2]],
|
|
|
|
[[3, -3, 3], [4, -4, 4]],
|
|
|
|
[[5, -5, 5], [6, -6, 6]]]).astype(np.int32)
|
|
|
|
y = np.split(x, 3, axis=2)
|
|
|
|
|
|
|
|
net = NetDynamic(2, 3)
|
|
|
|
x_split = net(Tensor(x))
|
|
|
|
for i, out in enumerate(x_split):
|
|
|
|
assert (out.asnumpy() == y[i]).all()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_split_invalid_input():
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
_ = Net(0.1, 3)
|
|
|
|
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
_ = Net(0, 3.0)
|
|
|
|
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
_ = Net(0, -3)
|
|
|
|
|
|
|
|
x = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.int32)
|
|
|
|
split_net = Net(2, 2)
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
_ = split_net(Tensor(x))
|
|
|
|
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
_ = split_net(x)
|