mindspore/tests/st/ops/gpu/test_sigmoid_op.py

58 lines
1.9 KiB
Python
Raw Normal View History

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
class NetSigmoid(nn.Cell):
def __init__(self):
super(NetSigmoid, self).__init__()
self.sigmoid = P.Sigmoid()
def construct(self, x):
return self.sigmoid(x)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sigmoid():
x = Tensor(np.array([[[[-1, 1, 10],
[1, -1, 1],
[10, 1, -1]]]]).astype(np.float32))
expect = np.array([[[[0.268941, 0.731059, 0.999955],
[0.731059, 0.268941, 0.731059],
[0.999955, 0.731059, 0.268941]]]]).astype(np.float32)
error = np.ones(shape=[1, 1, 3, 3]) * 1.0e-6
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
sigmoid = NetSigmoid()
output = sigmoid(x)
diff = output.asnumpy() - expect
assert np.all(abs(diff) < error)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
sigmoid = NetSigmoid()
output = sigmoid(x)
diff = output.asnumpy() - expect
assert np.all(abs(diff) < error)