forked from mindspore-Ecosystem/mindspore
100 lines
3.2 KiB
Python
100 lines
3.2 KiB
Python
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import mindspore.common.dtype as mstype
|
||
|
import mindspore.context as context
|
||
|
from mindspore.common.tensor import Tensor
|
||
|
from mindspore.nn import Cell
|
||
|
from mindspore.ops import operations as P
|
||
|
|
||
|
class LinSpaceNet(Cell):
|
||
|
def __init__(self, num):
|
||
|
super(LinSpaceNet, self).__init__()
|
||
|
self.ls_op = P.LinSpace()
|
||
|
self.num = num
|
||
|
|
||
|
def construct(self, start, stop):
|
||
|
output = self.ls_op(start, stop, self.num)
|
||
|
return output
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_lin_space_1():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||
|
start_np = 5
|
||
|
stop_np = 150
|
||
|
num_np = 12
|
||
|
start = Tensor(start_np, dtype=mstype.float32)
|
||
|
stop = Tensor(stop_np, dtype=mstype.float32)
|
||
|
num = num_np
|
||
|
ls_op = P.LinSpace()
|
||
|
result_ms = ls_op(start, stop, num).asnumpy()
|
||
|
result_np = np.linspace(start_np, stop_np, num_np)
|
||
|
assert np.allclose(result_ms, result_np)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_lin_shape_2():
|
||
|
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||
|
start_np = -25
|
||
|
stop_np = 147
|
||
|
num_np = 10
|
||
|
start = Tensor(start_np, dtype=mstype.float32)
|
||
|
stop = Tensor(stop_np, dtype=mstype.float32)
|
||
|
num = num_np
|
||
|
ls_op = P.LinSpace()
|
||
|
result_ms = ls_op(start, stop, num).asnumpy()
|
||
|
result_np = np.linspace(start_np, stop_np, num_np)
|
||
|
assert np.allclose(result_ms, result_np)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_lin_shape_3():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||
|
start_np = 25
|
||
|
stop_np = -147
|
||
|
num_np = 20
|
||
|
start = Tensor(start_np, dtype=mstype.float32)
|
||
|
stop = Tensor(stop_np, dtype=mstype.float32)
|
||
|
net = LinSpaceNet(num_np)
|
||
|
result_ms = net(start, stop).asnumpy()
|
||
|
result_np = np.linspace(start_np, stop_np, num_np)
|
||
|
assert np.allclose(result_ms, result_np)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_lin_shape_4():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||
|
start_np = -25.3
|
||
|
stop_np = -147
|
||
|
num_np = 36
|
||
|
start = Tensor(start_np, dtype=mstype.float32)
|
||
|
stop = Tensor(stop_np, dtype=mstype.float32)
|
||
|
net = LinSpaceNet(num_np)
|
||
|
result_ms = net(start, stop).asnumpy()
|
||
|
result_np = np.linspace(start_np, stop_np, num_np)
|
||
|
assert np.allclose(result_ms, result_np)
|