forked from mindspore-Ecosystem/mindspore
59 lines
1.7 KiB
Python
59 lines
1.7 KiB
Python
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import mindspore.context as context
|
||
|
from mindspore import Tensor
|
||
|
import mindspore.nn as nn
|
||
|
from mindspore.ops import operations as P
|
||
|
|
||
|
|
||
|
class Net(nn.Cell):
|
||
|
def __init__(self, axis=0, out_nums=1):
|
||
|
super(Net, self).__init__()
|
||
|
self.split = P.Split(axis, out_nums)
|
||
|
|
||
|
def construct(self, x):
|
||
|
return self.split(x)
|
||
|
|
||
|
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_split():
|
||
|
x = np.array([[[1, -1, 1], [2, -2, 2]],
|
||
|
[[3, -3, 3], [4, -4, 4]],
|
||
|
[[5, -5, 5], [6, -6, 6]]]).astype(np.float32)
|
||
|
|
||
|
split_op = Net(0, 3)
|
||
|
outputs = split_op(Tensor(x))
|
||
|
for i, out in enumerate(outputs):
|
||
|
assert (out.asnumpy() == x[i]).all()
|
||
|
|
||
|
|
||
|
def test_split_4d():
|
||
|
x_np = np.random.randn(2, 6, 4, 4).astype(np.float32)
|
||
|
y = np.split(x_np, 3, axis=1)
|
||
|
|
||
|
split_op = Net(1, 3)
|
||
|
outputs = split_op(Tensor(x_np))
|
||
|
|
||
|
for i, out in enumerate(outputs):
|
||
|
assert (out.asnumpy() == y[i]).all()
|