forked from mindspore-Ecosystem/mindspore
67 lines
2.0 KiB
Python
67 lines
2.0 KiB
Python
|
# Copyright 2022 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import mindspore as ms
|
||
|
import mindspore.nn as nn
|
||
|
|
||
|
|
||
|
class Net(nn.Cell):
|
||
|
def __init__(self):
|
||
|
super(Net, self).__init__()
|
||
|
self.pool = nn.PReLU(channel=2, w=-0.25)
|
||
|
|
||
|
def construct(self, x):
|
||
|
out = self.pool(x)
|
||
|
return out
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.platform_arm_cpu
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.env_onecard
|
||
|
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||
|
def test_prelu_normal(mode):
|
||
|
"""
|
||
|
Feature: PReLU
|
||
|
Description: Verify the result of PReLU
|
||
|
Expectation: success
|
||
|
"""
|
||
|
ms.set_context(mode=mode)
|
||
|
x = ms.Tensor([[[0.9192, -0.1487],
|
||
|
[-0.3999, -0.6840]],
|
||
|
|
||
|
[[0.4745, -0.6271],
|
||
|
[-0.6547, -0.5856]],
|
||
|
|
||
|
[[-0.2572, -0.8412],
|
||
|
[0.1918, -0.6117]]])
|
||
|
net = Net()
|
||
|
out = net(x)
|
||
|
expect_out = np.array([[[0.9192, 0.037175],
|
||
|
[0.099975, 0.171]],
|
||
|
|
||
|
[[0.4745, 0.156775],
|
||
|
[0.163675, 0.1464]],
|
||
|
|
||
|
[[0.0643, 0.2103],
|
||
|
[0.1918, 0.152925]]])
|
||
|
assert np.allclose(out.asnumpy().astype(np.float16), expect_out.astype(np.float16))
|