forked from mindspore-Ecosystem/mindspore
53 lines
1.7 KiB
Python
53 lines
1.7 KiB
Python
|
# Copyright 2022 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import mindspore as ms
|
||
|
import mindspore.nn as nn
|
||
|
|
||
|
|
||
|
class Net(nn.Cell):
|
||
|
def __init__(self, groups):
|
||
|
super(Net, self).__init__()
|
||
|
self.channel_shuffle = nn.ChannelShuffle(groups)
|
||
|
|
||
|
def construct(self, x):
|
||
|
return self.channel_shuffle(x)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.platform_arm_cpu
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.env_onecard
|
||
|
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||
|
def test_channel_shuffle_normal(mode):
|
||
|
"""
|
||
|
Feature: ChannelShuffle
|
||
|
Description: Verify the result of ChannelShuffle
|
||
|
Expectation: success
|
||
|
"""
|
||
|
ms.set_context(mode=mode)
|
||
|
net = Net(2)
|
||
|
x = ms.Tensor(np.arange(16).reshape((1, 4, 2, 2)), dtype=ms.int32)
|
||
|
out = net(x)
|
||
|
expect_out = np.array([[[[0, 1], [2, 3]], [[8, 9], [10, 11]],
|
||
|
[[4, 5], [6, 7]], [[12, 13], [14, 15]]]]).astype(np.int32)
|
||
|
assert np.allclose(out.asnumpy(), expect_out)
|