forked from mindspore-Ecosystem/mindspore
84 lines
2.8 KiB
Python
84 lines
2.8 KiB
Python
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
import os
|
||
|
import json
|
||
|
import time
|
||
|
import shutil
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
import mindspore.context as context
|
||
|
import mindspore.nn as nn
|
||
|
from mindspore import Tensor
|
||
|
from mindspore.ops import operations as P
|
||
|
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||
|
|
||
|
class Net(nn.Cell):
|
||
|
def __init__(self):
|
||
|
super(Net, self).__init__()
|
||
|
self.add = P.TensorAdd()
|
||
|
|
||
|
def construct(self, x_, y_):
|
||
|
return self.add(x_, y_)
|
||
|
|
||
|
x = np.random.randn(1, 3, 3, 4).astype(np.float32)
|
||
|
y = np.random.randn(1, 3, 3, 4).astype(np.float32)
|
||
|
|
||
|
def change_current_dump_json(file_name, dump_path):
|
||
|
with open(file_name, 'r+') as f:
|
||
|
data = json.load(f)
|
||
|
|
||
|
data["common_dump_settings"]["path"] = dump_path
|
||
|
with open(file_name, 'w') as f:
|
||
|
json.dump(data, f)
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_async_dump():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||
|
pwd = os.getcwd()
|
||
|
dump_path = pwd + "/dump"
|
||
|
change_current_dump_json('async_dump.json', dump_path)
|
||
|
os.environ['MINDSPORE_DUMP_CONFIG'] = pwd + "/async_dump.json"
|
||
|
device_id = context.get_context("device_id")
|
||
|
dump_file_path = pwd + '/dump/device_{}/Net_graph_0/0/0/'.format(device_id)
|
||
|
if os.path.isdir(dump_path):
|
||
|
shutil.rmtree(dump_path)
|
||
|
add = Net()
|
||
|
add(Tensor(x), Tensor(y))
|
||
|
time.sleep(5)
|
||
|
assert len(os.listdir(dump_file_path)) == 1
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_e2e_dump():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||
|
pwd = os.getcwd()
|
||
|
dump_path = pwd + "/dump"
|
||
|
change_current_dump_json('e2e_dump.json', dump_path)
|
||
|
os.environ['MINDSPORE_DUMP_CONFIG'] = pwd + "/e2e_dump.json"
|
||
|
device_id = context.get_context("device_id")
|
||
|
dump_file_path = pwd + '/dump/Net/device_{}/iteration_1/'.format(device_id)
|
||
|
if os.path.isdir(dump_path):
|
||
|
shutil.rmtree(dump_path)
|
||
|
add = Net()
|
||
|
add(Tensor(x), Tensor(y))
|
||
|
time.sleep(5)
|
||
|
assert len(os.listdir(dump_file_path)) == 5
|