mindspore/tests/ut/python/ops/test_python_operators.py

140 lines
4.1 KiB
Python
Raw Normal View History

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test control ops """
import functools
import numpy as np
2020-05-18 16:42:35 +08:00
from mindspore import Tensor
from mindspore import context
2020-05-18 16:42:35 +08:00
from mindspore import nn
from mindspore.common import dtype as mstype
2020-05-18 16:42:35 +08:00
from mindspore.ops import operations as P
from ....mindspore_test_framework.mindspore_test import mindspore_test
from ....mindspore_test_framework.pipeline.forward.compile_forward \
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
context.set_context(mode=context.GRAPH_MODE)
class ComparisonOpsNet(nn.Cell):
def __init__(self):
super(ComparisonOpsNet, self).__init__()
def construct(self, x, y):
a = x <= y
b = x <= 1.0
c = y >= 1.0
d = y >= x
e = x < y
f = x < 1.0
g = y < 1.0
h = y > x
i = y == 3.0
j = x != 4
k = + x
l = + 1.0
m = k != l
return a or b or c or d or e or f or g or h or i or j or m
class MathOpsNet(nn.Cell):
def __init__(self):
super(MathOpsNet, self).__init__()
self.relu = P.ReLU()
def construct(self, x, y):
x = x - (-1)
return self.relu(x)
class ScalarCompareNet(nn.Cell):
def __init__(self):
super(ScalarCompareNet, self).__init__()
self.relu = P.ReLU()
def construct(self, x, y):
t = 0
if 3 > 3.2:
t = x + y
else:
t = x - y
if 3.1 <= 5:
t = t - x
else:
t = t + x
a = 32.0 * 12
2020-05-18 10:31:46 +08:00
b = 12 / 3.0
if a > b:
t = t * x
else:
t = t / x
return t
class LogicalNumberOpsNet(nn.Cell):
def __init__(self):
super(LogicalNumberOpsNet, self).__init__()
self.cond = True
self.one = 0
self.zero = 0.0
def construct(self, x, y):
if self.cond and self.one or self.zero and not self.one:
return x + y
return x - y
class LogicalTensorOpsNet(nn.Cell):
def __init__(self):
""""""
super(LogicalTensorOpsNet, self).__init__()
self.const_true = Tensor(True, dtype=mstype.bool_)
def construct(self, x, y):
ret = x and y and (y or self.const_true) and (not y)
return ret
test_case_ops = [
('CompareOpsNet', {
'block': ComparisonOpsNet(),
'desc_inputs': [Tensor(1.0, dtype=mstype.float32),
Tensor(1.0, dtype=mstype.float32)]}),
('MathOpsNet', {
'block': MathOpsNet(),
'desc_inputs': [Tensor(np.ones([6, 9, 10]), dtype=mstype.float32),
Tensor(np.zeros([6, 9, 10]), dtype=mstype.float32)]}),
('ScalarCompareNet', {
'block': ScalarCompareNet(),
'desc_inputs': [Tensor(np.ones([6, 9, 10]), dtype=mstype.float32),
Tensor(np.zeros([6, 9, 10]), dtype=mstype.float32)]}),
('LogicalNumberOps', {
'block': LogicalNumberOpsNet(),
'desc_inputs': [Tensor(np.ones([6, 9, 10]), dtype=mstype.float32),
Tensor(np.zeros([6, 9, 10]), dtype=mstype.float32)]}),
('LogicalTensorOps', {
'block': LogicalTensorOpsNet(),
'desc_inputs': [Tensor(True, dtype=mstype.bool_),
Tensor(False, dtype=mstype.bool_)]}),
]
test_case_lists = [test_case_ops]
test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
def test_compile():
return test_exec_case