forked from mindspore-Ecosystem/mindspore
93 lines
3.1 KiB
Python
93 lines
3.1 KiB
Python
|
# Copyright 2022 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import mindspore as ms
|
||
|
import mindspore.nn as nn
|
||
|
import mindspore.ops as ops
|
||
|
from mindspore import Tensor
|
||
|
|
||
|
|
||
|
class Net(nn.Cell):
|
||
|
def construct(self, x):
|
||
|
return ops.tanhshrink(x)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.platform_arm_cpu
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.env_onecard
|
||
|
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||
|
def test_tanhshrink_normal(mode):
|
||
|
"""
|
||
|
Feature: Tanhshrink
|
||
|
Description: Verify the result of Tanhshrink with normal input
|
||
|
Expectation: success
|
||
|
"""
|
||
|
ms.set_context(mode=mode)
|
||
|
net = Net()
|
||
|
a = Tensor(np.array([1, 2, 3, 2, 1]).astype(np.float16))
|
||
|
output = net(a).asnumpy()
|
||
|
expected_output = np.array([0.2383, 1.036, 2.004, 1.036, 0.2383]).astype(np.float16)
|
||
|
assert np.allclose(output, expected_output, 1e-3, 1e-3)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.platform_arm_cpu
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.env_onecard
|
||
|
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||
|
def test_tanhshrink_negative(mode):
|
||
|
"""
|
||
|
Feature: Tanhshrink
|
||
|
Description: Verify the result of Tanhshrink with negative input
|
||
|
Expectation: success
|
||
|
"""
|
||
|
ms.set_context(mode=mode)
|
||
|
net = Net()
|
||
|
a = Tensor(np.array([-1, -2, -3, -2, -1]).astype(np.float16))
|
||
|
output = net(a).asnumpy()
|
||
|
expected_output = np.array([-0.2383, -1.036, -2.004, -1.036, -0.2383]).astype(np.float16)
|
||
|
assert np.allclose(output, expected_output, 1e-3, 1e-3)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.platform_arm_cpu
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.platform_arm_ascend_training
|
||
|
@pytest.mark.platform_x86_ascend_training
|
||
|
@pytest.mark.env_onecard
|
||
|
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||
|
def test_tanhshrink_zeros(mode):
|
||
|
"""
|
||
|
Feature: Tanhshrink
|
||
|
Description: Verify the result of Tanhshrink with zeros
|
||
|
Expectation: success
|
||
|
"""
|
||
|
ms.set_context(mode=mode)
|
||
|
net = Net()
|
||
|
a = Tensor(np.array([0, 0, 0, 0, 0]).astype(np.float16))
|
||
|
output = net(a).asnumpy()
|
||
|
expected_output = np.array([0, 0, 0, 0, 0]).astype(np.float16)
|
||
|
assert np.allclose(output, expected_output, 1e-3, 1e-3)
|