2020-03-27 14:49:12 +08:00
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
""" test_checkparam """
|
|
|
|
import numpy as np
|
|
|
|
import pytest
|
2020-05-13 11:30:27 +08:00
|
|
|
|
2020-03-27 14:49:12 +08:00
|
|
|
import mindspore
|
|
|
|
import mindspore.nn as nn
|
|
|
|
from mindspore import Model, context
|
|
|
|
from mindspore.common.tensor import Tensor
|
|
|
|
|
|
|
|
|
|
|
|
class LeNet5(nn.Cell):
|
|
|
|
""" LeNet5 definition """
|
2020-05-13 11:30:27 +08:00
|
|
|
|
2020-03-27 14:49:12 +08:00
|
|
|
def __init__(self):
|
|
|
|
super(LeNet5, self).__init__()
|
|
|
|
self.conv1 = nn.Conv2d(3, 6, 5, pad_mode="valid")
|
|
|
|
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode="valid")
|
|
|
|
self.fc1 = nn.Dense(16 * 5 * 5, 120)
|
|
|
|
self.fc2 = nn.Dense(120, 84)
|
|
|
|
self.fc3 = nn.Dense(84, 3)
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2)
|
|
|
|
self.flatten = nn.Flatten()
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
x = self.max_pool2d(self.relu(self.conv1(x)))
|
|
|
|
x = self.max_pool2d(self.relu(self.conv2(x)))
|
|
|
|
x = self.flatten(x)
|
|
|
|
x = self.relu(self.fc1(x))
|
|
|
|
x = self.relu(self.fc2(x))
|
|
|
|
x = self.fc3(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def predict_checke_param(in_str):
|
|
|
|
""" predict_checke_param """
|
|
|
|
net = LeNet5() # neural network
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
model = Model(net)
|
|
|
|
|
|
|
|
a1, a2, b1, b2, b3, b4 = in_str.strip().split()
|
|
|
|
a1 = int(a1)
|
|
|
|
a2 = int(a2)
|
|
|
|
b1 = int(b1)
|
|
|
|
b2 = int(b2)
|
|
|
|
b3 = int(b3)
|
|
|
|
b4 = int(b4)
|
|
|
|
|
|
|
|
nd_data = np.random.randint(a1, a2, [b1, b2, b3, b4])
|
|
|
|
input_data = Tensor(nd_data, mindspore.float32)
|
|
|
|
model.predict(input_data)
|
|
|
|
|
|
|
|
|
|
|
|
def test_predict_checke_param_failed():
|
|
|
|
""" test_predict_checke_param_failed """
|
|
|
|
in_str = "0 255 0 3 32 32"
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
predict_checke_param(in_str)
|