2020-06-29 17:39:25 +08:00
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
2020-06-18 12:09:59 +08:00
|
|
|
import numpy as np
|
|
|
|
from mindspore import context, nn, Tensor, Parameter
|
|
|
|
from mindspore.common import dtype as mstype
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False)
|
|
|
|
|
|
|
|
class Net(nn.Cell):
|
|
|
|
def __init__(self, data):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.start = Tensor(0, dtype=mstype.int32)
|
|
|
|
self.end = Tensor(2, dtype=mstype.int32)
|
|
|
|
self.max_output = Parameter(data, "output_x")
|
|
|
|
self.upd = P.ScatterNdUpdate()
|
|
|
|
self.zero = Tensor(np.ones([1], dtype=np.int32))
|
|
|
|
|
|
|
|
def construct(self, inputs):
|
|
|
|
idx = self.start
|
|
|
|
end = self.end
|
|
|
|
while idx < end:
|
|
|
|
xi = inputs[idx, :, :]
|
|
|
|
self.upd(self.max_output, idx + self.zero, xi)
|
|
|
|
idx = idx + 1
|
|
|
|
return self.max_output + 0
|
|
|
|
|
|
|
|
|
|
|
|
def test_x():
|
|
|
|
x = Tensor(np.arange(10 * 2 * 3).reshape(10, 2, 3).astype(np.float32))
|
|
|
|
net = Net(x)
|
|
|
|
net(x)
|