forked from jittor/jittor
75 lines
1.3 KiB
Markdown
75 lines
1.3 KiB
Markdown
# CHANGELOG
|
||
|
||
### 计图 1.1.5.5
|
||
|
||
* 新增numpy code算子,现在可以直接使用numpy来自定义算子了,使用用例:
|
||
|
||
```python
|
||
import jittor as jt
|
||
|
||
def forward_code(np, data):
|
||
a = data["inputs"][0]
|
||
b = data["outputs"][0]
|
||
np.add(a,a,out=b)
|
||
|
||
def backward_code(np, data):
|
||
dout = data["dout"]
|
||
out = data["outputs"][0]
|
||
np.copyto(out, dout*2.0)
|
||
|
||
a = jt.random((5,1))
|
||
b = jt.numpy_code(
|
||
a.shape,
|
||
a.dtype,
|
||
[a],
|
||
forward_code,
|
||
[backward_code],
|
||
)
|
||
```
|
||
|
||
* 新增 Function 模块,用户可以自定义反向传播了,使用用例:
|
||
|
||
```python
|
||
import jittor as jt
|
||
from jittor import Function
|
||
|
||
class MyFunc(Function):
|
||
def execute(self, x, y):
|
||
self.x = x
|
||
self.y = y
|
||
return x*y, x/y
|
||
|
||
def grad(self, grad0, grad1):
|
||
return grad0 * self.y, grad1 * self.x
|
||
a = jt.array(3.0)
|
||
b = jt.array(4.0)
|
||
func = MyFunc()
|
||
c,d = func(a, b)
|
||
da, db = jt.grad(c+d*3, [a, b])
|
||
assert da.data == 4
|
||
assert db.data == 9
|
||
```
|
||
|
||
* 新增 no_grad scope, 在这个scope中创建的所有变量都会停止梯度:
|
||
|
||
```python
|
||
import jittor as jt
|
||
|
||
with jt.no_grad():
|
||
...
|
||
```
|
||
|
||
* 新增 bmm(batch matrix multiply) 支持:
|
||
|
||
```python
|
||
import jittor as jt
|
||
from jittor import nn
|
||
|
||
batch, n, m, k = 100, 5, 6, 7
|
||
|
||
a = jt.random((batch, n, m))
|
||
b = jt.random((batch, m, k))
|
||
c = nn.bmm(a, b)
|
||
```
|
||
|
||
* 修复 unsqueeze |