b09f1d939d
add the algorithm of competition scores to the .md file in dependency |
||
---|---|---|
.. | ||
README.md |
README.md
Algorithm
天梯分数计算算法
原始记录在:https://github.com/eesast/THUAI5/discussions/86
内容如下:
THUAI4
关于根据队式每场比赛的分数映射到天梯分数的问题:
队式比赛为两队对战,每队得分的区间均为 [0, 2500]。
以 tanh 函数为基础进行设计。
设计原则如下:
- 输的扣少量天梯分,赢的得大量天梯分
- 本就有极高天梯分数的虐本就天梯分数低的,这种降维打击现象,天梯分数涨幅极小甚至不涨天梯分
- 如果在某场比赛中,两者表现差不多,即赢的比输的得分高得不多的话,那么天梯分数涨幅也不是很高
- 如果本来天梯分数很低的,赢了天梯分数很高的,那么他得到的天梯分会较高,而另一个人,天梯分数降分稍多一些
- 如果天梯分数低的赢了天梯分数高的,但是这场比赛赢得不多的话,会把两人的分数向中间靠拢
- 总体上,赢的队伍不会降天梯分;输的队伍不会加天梯分
- 其他条件相同的情况下,在本场游戏中得分越多,加的天梯分数也越高
上述原则可以保证以下两个目的的达成:
- 总体来看,进行的游戏场次越多,所有队伍的平均天梯分数就越高
- 经过足够多次的游戏场次,实力有一定差距的队伍的天体分数差距逐渐拉开,实力相近的队伍的天梯分数不会差别过大,各支队伍的排名趋近于收敛
用 cpp 代码编写算法代码如下(cal
函数):
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
template <typename T>
using mypair = pair<T, T>;
// orgScore 是天梯中两队的分数;competitionScore 是这次游戏两队的得分
mypair<int> cal(mypair<int> orgScore, mypair<int> competitionScore)
{
// 调整顺序,让第一个元素成为获胜者,便于计算
bool reverse = false; // 记录是否需要调整
if (competitionScore.first < competitionScore.second)
{
reverse = true;
}
else if (competitionScore.first == competitionScore.second)
{
if (orgScore.first == orgScore.second) // 完全平局,不改变天梯分数
{
return orgScore;
}
if (orgScore.first > orgScore.second) // 本次游戏平局,但一方天梯分数高,另一方天梯分数低,需要将两者向中间略微靠拢,因此天梯分数低的定为获胜者
{
reverse = true;
}
else
{
reverse = false;
}
}
if (reverse) // 如果需要换,换两者的顺序
{
swap(competitionScore.first, competitionScore.second);
swap(orgScore.first, orgScore.second);
}
// 转成浮点数
mypair<double> orgScoreLf;
mypair<double> competitionScoreLf;
orgScoreLf.first = orgScore.first;
orgScoreLf.second = orgScore.second;
competitionScoreLf.first = competitionScore.first;
competitionScoreLf.second = competitionScore.second;
mypair<int> resScore;
const double deltaWeight = 80.0; // 差距悬殊判断参数,比赛分差超过此值就可以认定为非常悬殊了,天梯分数增量很小,防止大佬虐菜鸡的现象造成两极分化
double delta = (orgScoreLf.first - orgScoreLf.second) / deltaWeight;
cout << "Tanh delta: " << tanh(delta) << endl;
{
const double firstnerGet = 8e-5; // 胜利者天梯得分权值
const double secondrGet = 5e-6; // 失败者天梯得分权值
double deltaScore = 100.0; // 两队竞争分差超过多少时就认为非常大
double correctRate = (orgScoreLf.first - orgScoreLf.second) / 100.0; // 订正的幅度,该值越小,则在势均力敌时天梯分数改变越大
double correct = 0.5 * (tanh((competitionScoreLf.first - competitionScoreLf.second - deltaScore) / deltaScore - correctRate) + 1.0); // 一场比赛中,在双方势均力敌时,减小天梯分数的改变量
resScore.first = orgScore.first + round(competitionScoreLf.first * competitionScoreLf.first * firstnerGet * (1 - tanh(delta)) * correct); // 胜者所加天梯分
resScore.second = orgScore.second - round((2500.0 - competitionScoreLf.second) * (2500.0 - competitionScoreLf.second) * secondrGet * (1 - tanh(delta)) * correct); // 败者所扣天梯分,2500 为得分的最大值(THUAI4 每场得分介于 0~2500 之间)
}
// 如果换过,再换回来
if (reverse)
{
swap(resScore.first, resScore.second);
}
return resScore;
}
特别注意:此算法是在 THUAI4 的比赛直接得分封顶为 2500 分、最低不低于 0 分的前提下设计的,因此并不一定适用于 THUAI5 的情形。
THUAI5
今年把得分上限这个东西去掉了。理论上今年可以得很高很高分,但是我估计大部分比赛得分在400-600左右,最高估计1000左右。算法 借 鉴 了THUAI4,算法,换了个激活函数(正态CDF),感觉分数变化相对更好了一些? 代码如下:
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
template <typename T>
using mypair = pair<T, T>;
double PHI(double x) // THUAI3: Sigmoid; THUAI4: Tanh; THUAI5: Normal Distribution CDF
{
//double a1 = 0.2548292592;
//double a2 = -0.284496736;
//double a3 = 1.421413741;
//double a4 = -1.453152027;
//double a5 = 1.061405429;
//double p = 0.3275911;
//int sign = 1;
//if (x < 0)
// sign = -1;
//x = fabs(x) / sqrt(2.0);
//double t = 1.0 / (1.0 + p * x);
//double y = 1.0 - ((((((a5 * t + a4) * t + a3) * t) + a2) * t) + a1) * t * exp(-x * x);
//double cdf = 0.5 * (1.0 + sign * y);
//return (cdf - 0.5) * 2.0; // 化到[-1,1]之间
return erf(x / sqrt(2));
}
// orgScore 是天梯中两队的分数;competitionScore 是这次游戏两队的得分
mypair<int> cal(mypair<int> orgScore, mypair<int> competitionScore)
{
// 调整顺序,让第一个元素成为获胜者,便于计算
bool reverse = false; // 记录是否需要调整
if (competitionScore.first < competitionScore.second)
{
reverse = true;
}
else if (competitionScore.first == competitionScore.second)
{
if (orgScore.first == orgScore.second) // 完全平局,不改变天梯分数
{
return orgScore;
}
if (orgScore.first > orgScore.second) // 本次游戏平局,但一方天梯分数高,另一方天梯分数低,需要将两者向中间略微靠拢,因此天梯分数低的定为获胜者
{
reverse = true;
}
else
{
reverse = false;
}
}
if (reverse) // 如果需要换,换两者的顺序
{
swap(competitionScore.first, competitionScore.second);
swap(orgScore.first, orgScore.second);
}
// 转成浮点数
mypair<double> orgScoreLf;
mypair<double> competitionScoreLf;
orgScoreLf.first = orgScore.first;
orgScoreLf.second = orgScore.second;
competitionScoreLf.first = competitionScore.first;
competitionScoreLf.second = competitionScore.second;
mypair<int> resScore;
const double deltaWeight = 90.0; // 差距悬殊判断参数,比赛分差超过此值就可以认定为非常悬殊了,天梯分数增量很小,防止大佬虐菜鸡的现象造成两极分化
double delta = (orgScoreLf.first - orgScoreLf.second) / deltaWeight;
cout << "Normal CDF delta: " << PHI(delta) << endl;
{
const double firstnerGet = 3e-4; // 胜利者天梯得分权值
const double secondrGet = 1e-4; // 失败者天梯得分权值
double deltaScore = 100.0; // 两队竞争分差超过多少时就认为非常大
double correctRate = (orgScoreLf.first - orgScoreLf.second) / 100.0; // 订正的幅度,该值越小,则在势均力敌时天梯分数改变越大
double correct = 0.5 * (PHI((competitionScoreLf.first - competitionScoreLf.second - deltaScore) / deltaScore - correctRate) + 1.0); // 一场比赛中,在双方势均力敌时,减小天梯分数的改变量
resScore.first = orgScore.first + round(competitionScoreLf.first * competitionScoreLf.first * firstnerGet * (1 - PHI(delta)) * correct); // 胜者所加天梯分
if (competitionScoreLf.second < 1000)
resScore.second = orgScore.second - round((1000.0 - competitionScoreLf.second) * (1000.0 - competitionScoreLf.second) * secondrGet * (1 - PHI(delta)) * correct); // 败者所扣天梯分
else
resScore.second = orgScore.second; // 败者拿1000分,已经很强了,不扣分
}
// 如果换过,再换回来
if (reverse)
{
swap(resScore.first, resScore.second);
}
return resScore;
}
void Print(mypair<int> score)
{
std::cout << " team1: " << score.first << std::endl
<< "team2: " << score.second << std::endl;
}
int main()
{
int x, y;
std::cout << "origin score of team 1 and 2: " << std::endl;
std::cin >> x >> y;
auto ori = mypair<int>(x, y);
std::cout << "game score of team 1 and 2: " << std::endl;
std::cin >> x >> y;
auto sco = mypair<int>(x, y);
Print(cal(ori, sco));
}
1000 - score
(x
ReLU(1000 - score)
(√
防止真的超过了 1000)
THUAI6
high-ladder
因为今年的对局得分是两局得分之和,所以会出现一定程度的“数值膨胀”,在这里调低了胜者得分权值,同时提高了比赛分差距悬殊阈值和天梯分差距悬殊阈值。同时由于今年得分的上限不好确定,所以负者失分的基础值变为与胜者的得分之差。
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
template <typename T>
using mypair = pair<T, T>;
// orgScore 是天梯中两队的分数;competitionScore 是这次游戏两队的得分
mypair<int> cal(mypair<int> orgScore, mypair<int> competitionScore)
{
// 调整顺序,让第一个元素成为获胜者,便于计算
bool reverse = false; // 记录是否需要调整
if (competitionScore.first < competitionScore.second)
{
reverse = true;
}
else if (competitionScore.first == competitionScore.second)
{
if (orgScore.first == orgScore.second) // 完全平局,不改变天梯分数
{
return orgScore;
}
if (orgScore.first > orgScore.second) // 本次游戏平局,但一方天梯分数高,另一方天梯分数低,需要将两者向中间略微靠拢,因此天梯分数低的定为获胜者
{
reverse = true;
}
else
{
reverse = false;
}
}
if (reverse) // 如果需要换,换两者的顺序
{
swap(competitionScore.first, competitionScore.second);
swap(orgScore.first, orgScore.second);
}
// 转成浮点数
mypair<double> orgScoreLf;
mypair<double> competitionScoreLf;
orgScoreLf.first = orgScore.first;
orgScoreLf.second = orgScore.second;
competitionScoreLf.first = competitionScore.first;
competitionScoreLf.second = competitionScore.second;
mypair<int> resScore;
const double deltaWeight = 1000.0; // 差距悬殊判断参数,比赛分差超过此值就可以认定为非常悬殊了,天梯分数增量很小,防止大佬虐菜鸡的现象造成两极分化
double delta = (orgScoreLf.first - orgScoreLf.second) / deltaWeight;
cout << "Tanh delta: " << tanh(delta) << endl;
{
const double firstnerGet = 9e-6; // 胜利者天梯得分权值
const double secondrGet = 5e-6; // 失败者天梯得分权值
double deltaScore = 2100.0; // 两队竞争分差超过多少时就认为非常大
double correctRate = (orgScoreLf.first - orgScoreLf.second) / (deltaWeight * 1.2); // 订正的幅度,该值越小,则在势均力敌时天梯分数改变越大
double correct = 0.5 * (tanh((competitionScoreLf.first - competitionScoreLf.second - deltaScore) / deltaScore - correctRate) + 1.0); // 一场比赛中,在双方势均力敌时,减小天梯分数的改变量
cout << "correct: " << correct << endl;
resScore.first = orgScore.first + round(competitionScoreLf.first * competitionScoreLf.first * firstnerGet * (1 - tanh(delta)) * correct); // 胜者所加天梯分
resScore.second = orgScore.second - round((competitionScoreLf.first - competitionScoreLf.second) * (competitionScoreLf.first - competitionScoreLf.second) * secondrGet * (1 - tanh(delta)) * correct); // 败者所扣天梯分
}
// 如果换过,再换回来
if (reverse)
{
swap(resScore.first, resScore.second);
}
return resScore;
}
competition
与天梯得分算法要满足的“枫氏七条”类似,比赛得分算法也要满足“唐氏四律”,分别如下:
- 两队经过某场比赛的得分变化,应只与该场比赛有关,而与历史积分无关。
- 须赋予比赛获胜一方基础得分,哪怕获胜一方的优势非常小。也就是说,哪怕胜利一方仅以微弱优势获胜,也需要拉开胜者与败者的分差。
- 胜利一方优势越大,得分理应越高。
- 对于一场比赛,胜利一方的得分不能无限大,须控制在一个合理的数值以下。
- 在非平局的情况下,(胜者)天梯得分与双方比赛分差值成正相关,得分函数如下(以x表示得分差值,y表示(胜者)天梯得分,a、b为固定参数)
$y=ax^2(1-0.375\cdot(\tanh(\frac{x}{b}-1)+1))
$
- 在平局情况下,(双方)天梯得分与比赛分成正相关,得分函数如下(以x表示比赛分,y表示(双方)天梯得分,c为固定参数)
$y=cx^2
$
- 不管是哪种情况,都有得分下界,非平局为100,平局为25
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cassert>
using namespace std;
template <typename T>
using mypair = pair<T, T>;
double minScore = 100;
double TieScore(double gameScore)
{
const double get = 9e-5; // 天梯得分权值
double deltaScore = 2000.0; // 订正的幅度,该值越小,则在双方分差较大时,天梯分数改变量越小,整个函数的变化范围大约为0~2*deltaScore
double highScore = 6000.0; // 将highScore设定为较大值,使得correct较小
double correct = 1 - 0.375 * (tanh((highScore - deltaScore) / deltaScore) + 1.0); // 一场比赛中,在双方分差较大时,减小天梯分数的改变量
cout << "correct: " << correct << endl;
int score = round(gameScore * gameScore * get * correct / 4);
return score > minScore / 4 ? score : minScore / 4;
}
double WinScore(double delta, double winnerGameScore) // 根据游戏得分差值,与绝对分数,决定最后的加分
{
assert(delta > 0);
const double firstnerGet = 9e-5; // 胜利者天梯得分权值
double deltaScore = 2000.0; // 订正的幅度,该值越小,则在双方分差较大时,天梯分数改变量越小,整个函数的变化范围大约为0~2*deltaScore
double correct = 1 - 0.375 * (tanh((delta - deltaScore) / deltaScore) + 1.0); // 一场比赛中,在双方分差较大时,减小天梯分数的改变量
cout << "correct: " << correct << endl;
int score = round(delta * delta * firstnerGet * correct);
return score > minScore ? score : minScore;
}
// orgScore 是天梯中两队的分数;competitionScore 是这次游戏两队的得分
mypair<double> cal(mypair<double> orgScore, mypair<double> competitionScore)
{
// 调整顺序,让第一个元素成为获胜者,便于计算
bool reverse = false; // 记录是否需要调整
if (competitionScore.first < competitionScore.second)
{
reverse = true;
}
if (reverse) // 如果需要换,换两者的顺序
{
swap(competitionScore.first, competitionScore.second);
swap(orgScore.first, orgScore.second);
}
double delta = competitionScore.first - competitionScore.second;
double addScore;
mypair<double> resScore;
// 先处理平局的情况
if (delta == 0)
{
addScore = TieScore(competitionScore.first);
resScore = mypair<double>(orgScore.first + addScore, orgScore.second + addScore);
}
// 再处理有胜负的情况
else
{
addScore = WinScore(delta, competitionScore.first);
resScore = mypair<double>(orgScore.first + addScore, orgScore.second);
}
// 如果换过,再换回来
if (reverse)
{
swap(resScore.first, resScore.second);
}
return resScore;
}
void Print(mypair<double> score)
{
std::cout << "team1: " << score.first << std::endl
<< "team2: " << score.second << std::endl;
}
int main()
{
double x, y, t, i = 0;
cin >> t;
while (i < t)
{
cout << "----------------------------------------\n";
std::cout << "origin score of team 1 and 2: " << std::endl;
std::cin >> x >> y;
auto ori = mypair<double>(x, y);
std::cout << "game score of team 1 and 2: " << std::endl;
std::cin >> x >> y;
auto sco = mypair<double>(x, y);
Print(cal(ori, sco));
++i;
}
return 0;
}